Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Metab Eng ; 69: 59-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34775076

ABSTRACT

The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Carbon/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Glycerol/metabolism , Laboratories , Metabolic Engineering , gamma-Aminobutyric Acid/genetics
2.
Appl Microbiol Biotechnol ; 106(21): 7063-7072, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36195703

ABSTRACT

Protein expression with a fusion partner followed by the removal of the fusion partner via in vitro processing with a specific endoprotease is a favored method for the efficient production of intact recombinant proteins. Due to the high cost of commercial endoproteases, this process is restricted to laboratories. Kex2p is a membrane-bound serine protease that cleaves after dibasic residues of substrates in the late Golgi network. Although Kex2p is a very efficient endoprotease with exceptional specificity, it has not yet been used for the in vitro processing of fusion proteins due to its autolysis and high production cost. In this study, we developed an alternative endoprotease, autolysis-proof Kex2p, via site-directed mutagenesis of truncated KEX2 from Candida albicans (CaKEX2). Secretory production of manipulated CaKex2p was improved by employing target protein-specific translational fusion partner in Saccharomyces cerevisiae. The mass production of autolysis-proof Kex2p could facilitate the use of Kex2p for the large-scale production of recombinant proteins. KEY POINTS: • A soluble and active CaKex2p variant was produced by autocatalytic cleavage of the pro-peptide after truncation of C-terminus • Autolysis-proof CaKex2p was developed by site-directed mutagenesis • Secretion of autolysis-proof CaKex2p was improved by employing optimal translational fusion partner in Saccharomyces cerevisiae.


Subject(s)
Fungal Proteins , Proprotein Convertases , Saccharomyces cerevisiae , Candida albicans/enzymology , Candida albicans/genetics , Peptide Hydrolases/metabolism , Peptides/metabolism , Proprotein Convertases/metabolism , Recombinant Fusion Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Serine Endopeptidases/metabolism , Subtilisins/metabolism , Fungal Proteins/biosynthesis
3.
Appl Microbiol Biotechnol ; 106(2): 663-673, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34971409

ABSTRACT

For the efficient production of heterologous proteins in the yeast Saccharomyces cerevisiae, we screened for a novel fusion partner from the yeast secretome. From twenty major proteins identified from the yeast secretome, we selected Scw4p, a cell wall protein with similarity to glucanase, and modified to develop a general fusion partner for the secretory expression of heterologous proteins in yeast. The optimal size of the SCW4 gene to act as an efficient fusion partner was determined by C-terminal truncation analysis; two of the variants, S1 (truncated at codon 115Q) and S2 (truncated at codon 142E), were further used for the secretion of heterologous proteins. When fused with S2, the secretion of three target proteins (hGH, exendin-4, and hPTH) significantly increased. Conserved O-glycosylation sites (Ser/Thr-rich domain) and hydrophilic sequences of S2 were deemed important for the function of S2 as a secretion fusion partner. Approximately 5 g/L of the S2-exendin-4 fusion protein was obtained from fed-batch fermentation. Intact target proteins were easily purified by affinity chromatography after in vitro processing of the fusion partner. This system may be of general application for the secretory production of heterologous proteins in S. cerevisiae. KEY POINTS : • Target proteins were efficiently secreted with their N-terminus fused to Scw4p. • O-glycosylation and hydrophilic stretches in Scw4p were important for protein secretion. • A variant of Scw4p (S2) was successfully applied for the secretory expression of heterologous proteins.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Secretome
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499519

ABSTRACT

Microbial infections remain a global health concern, calling for the urgent need to implement effective prevention measures. Antimicrobial peptides (AMPs) have been extensively studied as potential antimicrobial coating agents. However, an efficient and economical method for AMP production is lacking. Here, we synthesized the direct coating adhesive AMP, NKC-DOPA5, composed of NKC, a potent AMP, and repeats of the adhesive amino acid 3,4-dihydroxyphenylalanine (DOPA) via an intein-mediated protein ligation strategy. NKC was expressed as a soluble fusion protein His-NKC-GyrA (HNG) in Escherichia coli, comprising an N-terminal 6× His-tag and a C-terminal Mxe GyrA intein. The HNG protein was efficiently produced in a 500-L fermenter, with a titer of 1.63 g/L. The NKC-thioester was released from the purified HNG fusion protein by thiol attack and subsequently ligated with chemically synthesized Cys-DOPA5. The ligated peptide His-NKC-Cys-DOPA5 was obtained at a yield of 88.7%. The purified His-NKC-Cys-DOPA5 possessed surface-binding and antimicrobial properties identical to those of the peptide obtained via solid-phase peptide synthesis. His-NKC-Cys-DOPA5 can be applied as a practical and functional antimicrobial coating to various materials, such as medical devices and home appliances.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Adhesives/metabolism , Anti-Infective Agents/chemistry , Dihydroxyphenylalanine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Microb Cell Fact ; 20(1): 232, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963459

ABSTRACT

BACKGROUND: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. RESULTS: A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. CONCLUSIONS: The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


Subject(s)
Carbohydrates/chemistry , Escherichia coli/metabolism , Protein Engineering/methods , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Alcohol Dehydrogenase/biosynthesis , Alcohol Dehydrogenase/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Bone Morphogenetic Protein 7/biosynthesis , Bone Morphogenetic Protein 7/isolation & purification , Carrier Proteins/biosynthesis , Carrier Proteins/isolation & purification , Cloning, Molecular , Epidermal Growth Factor/biosynthesis , Epidermal Growth Factor/isolation & purification , Fungal Proteins/biosynthesis , Fungal Proteins/isolation & purification , Gene Expression , Humans , Hydrolases/biosynthesis , Hydrolases/isolation & purification , Inclusion Bodies/metabolism , Lipase/biosynthesis , Lipase/isolation & purification , Maltose-Binding Proteins , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Solubility , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/isolation & purification
6.
Int J Mol Sci ; 22(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34769345

ABSTRACT

Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent synthetic antimicrobial peptide, and the adhesiveness and antibacterial properties of the resulting peptides are evaluated. The peptide is successfully immobilized on polystyrene, titanium, and polydimethylsiloxane surfaces within 10 min in a one-step coating process with no prior surface functionalization. The antibacterial effectiveness of the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces is confirmed by complete inhibition of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus within 2 h. The stability of the peptide coated on the substrate surface is maintained for 84 days, as confirmed by its bactericidal activity. Additionally, the NKC-DOPA5-coated polystyrene, titanium, and polydimethylsiloxane surfaces show no cytotoxicity toward the human keratinocyte cell line HaCaT. The antimicrobial properties of the peptide-coated surfaces are confirmed in a subcutaneous implantation animal model. The adhesive antimicrobial peptide developed in this study exhibits potential as an antimicrobial surface-coating agent for efficiently killing a broad spectrum of bacteria on contact.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Escherichia coli/drug effects , Phenylalanine/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Escherichia coli/growth & development , Humans , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development
7.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540582

ABSTRACT

Methanol dehydrogenase (Mdh), is a crucial enzyme for utilizing methane and methanol as carbon and energy sources in methylotrophy and synthetic methylotrophy. Engineering of Mdh, especially NAD-dependent Mdh, has thus been actively investigated to enhance methanol conversion. However, its poor catalytic activity and low methanol affinity limit its wider application. In this study, we applied a transcriptional factor-based biosensor for the direct evolution of Mdh from Lysinibacillus xylanilyticus (Lxmdh), which has a relatively high turnover rate and low KM value compared to other wild-type NAD-dependent Mdhs. A random mutant library of Lxmdh was constructed in Escherichia coli and was screened using formaldehyde-detectable biosensors by incubation with low methanol concentrations. Positive clones showing higher fluorescence were selected by fluorescence-activated cell sorting (FACS) system, and their catalytic activities toward methanol were evaluated. The successfully isolated mutants E396V, K318N, and K46E showed high activity, particularly at very low methanol concentrations. In kinetic analysis, mutant E396V, K318N, and K46E had superior methanol conversion efficiency, with 79-, 23-, and 3-fold improvements compared to the wild-type, respectively. These mutant enzymes could thus be useful for engineering synthetic methylotrophy and for enhancing methanol conversion to various useful products.


Subject(s)
Alcohol Oxidoreductases/genetics , Bacillaceae/enzymology , Mutation , Alcohol Oxidoreductases/metabolism , Bacillaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosensing Techniques , Kinetics , Methanol/metabolism
8.
J Ind Microbiol Biotechnol ; 46(11): 1611-1620, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31230216

ABSTRACT

Levan is a fructose polymer with diverse applications in the food and medical industries. In this study, levansucrase from Rahnella aquatilis (RaLsrA) was hyper-secreted using a Saccharomyces cerevisiae protein secretion system. An optimal secretion signal, a translation fusion partner (TFP) containing an N-terminal 98 amino acid domain from a mitochondrial inner membrane protein, UTH1, was employed to secrete approximately 50 U/mL of bioactive RaLsrA into culture media with 63% secretion efficiency by fed-batch fermentation. Although the purified RaLsrA was useful for enzymatic conversion of high-molecular-weight levan of approximately 3.75 × 106 Da, recombinant yeast secreting RaLsrA could produce levan more efficiently by microbial fermentation. In a 50-L scale fermenter, 76-g/L levan was directly converted from 191-g/L sucrose by recombinant yeast cells, attaining an 80% conversion yield and 3.17-g/L/h productivity. Thus, we developed a cost-effective and industrially applicable production system for food-grade levan.


Subject(s)
Fructans/biosynthesis , Hexosyltransferases/metabolism , Saccharomyces cerevisiae/metabolism , Bioreactors , Fermentation , Fructose/metabolism , Hexosyltransferases/genetics , Saccharomyces cerevisiae/genetics , Sucrose/metabolism
9.
Int J Mol Sci ; 20(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067766

ABSTRACT

The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C-C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell-level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0-250 mM), formaldehyde (1.0-50 µM), and methanol (5-400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.


Subject(s)
Bacterial Proteins/metabolism , Biosensing Techniques/methods , Formaldehyde/analysis , Formates/analysis , Methanol/analysis , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Transcription Factors
10.
Biotechnol Bioeng ; 115(9): 2232-2242, 2018 09.
Article in English | MEDLINE | ID: mdl-29896854

ABSTRACT

Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of d-lactic acid (LA), an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain could grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing the pyruvate decarboxylase 1 gene (PDC1) with the d-lactate dehydrogenase gene (d-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of d-LA with productivity over 3.66 g/L/hr at pH 3.6 and 4.16 g/L/hr at pH 4.7, respectively.


Subject(s)
Lactic Acid/metabolism , Metabolic Engineering/methods , Pichia/isolation & purification , Pichia/metabolism , Acids/toxicity , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Drug Tolerance , Hydrogen-Ion Concentration , Metabolic Networks and Pathways/genetics , Phylogeny , Pichia/classification , Pichia/drug effects , Sequence Analysis, DNA , Temperature , Vitis/microbiology
11.
Bioinformatics ; 32(4): 611-3, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26504145

ABSTRACT

UNLABELLED: Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. AVAILABILITY AND IMPLEMENTATION: NMRe is available at http://psb.kobic.re.kr/nmre/.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Software , Internet , Knowledge Bases
12.
Appl Environ Microbiol ; 82(8): 2280-2287, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26850302

ABSTRACT

Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii.


Subject(s)
Metabolic Engineering/methods , Probiotics , Saccharomyces/genetics , Gene Expression , Genetics, Microbial , Molecular Biology/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces/growth & development
13.
Biotechnol Bioeng ; 113(12): 2587-2596, 2016 12.
Article in English | MEDLINE | ID: mdl-27240865

ABSTRACT

Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+ -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.


Subject(s)
Acetates/metabolism , Aldehyde Oxidoreductases/metabolism , Cellulose/metabolism , Coenzyme A Ligases/metabolism , Ethanol/metabolism , Saccharomyces cerevisiae/physiology , Aldehyde Oxidoreductases/genetics , Coenzyme A Ligases/genetics , Ethanol/isolation & purification , Genetic Enhancement/methods , Metabolic Engineering/methods , Oxidation-Reduction , Signal Transduction/physiology
14.
Biotechnol Bioeng ; 113(10): 2149-55, 2016 10.
Article in English | MEDLINE | ID: mdl-27003667

ABSTRACT

Rapid advances in the capabilities of reading and writing DNA along with increasing understanding of microbial metabolism at the systems-level have paved an incredible path for metabolic engineering. Despite these advances, post-translational tools facilitating functional expression of heterologous enzymes in model hosts have not been developed well. Some bacterial enzymes, such as Escherichia coli xylose isomerase (XI) and arabinose isomerase (AI) which are essential for utilizing cellulosic sugars, cannot be functionally expressed in Saccharomyces cerevisiae. We hypothesized and demonstrated that the mismatching of the HSP60 chaperone systems between bacterial and eukaryotic cells might be the reason these bacterial enzymes cannot be functionally expressed in yeast. The results showed that the co-expression of E. coli GroE can facilitate the functional expression of E. coli XI and AI, as well as the Agrobacterium tumefaciens D-psicose epimerase in S. cerevisiae. The co-expression of bacterial chaperonins in S. cerevisiae is a promising post-translational strategy for the functional expression of bacterial enzymes in yeast. Biotechnol. Bioeng. 2016;113: 2149-2155. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bacterial Proteins/metabolism , Chaperonin 60/metabolism , Escherichia coli Proteins/metabolism , Heat-Shock Proteins/metabolism , Metabolic Engineering/methods , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Bacterial Proteins/genetics , Chaperonin 60/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Enzymologic/genetics , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Engineering/methods , Protein Processing, Post-Translational/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics
15.
Microb Cell Fact ; 15(1): 185, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27825357

ABSTRACT

BACKGROUND: (-)-α-Bisabolol, also known as levomenol, is an unsaturated sesquiterpene alcohol that has mainly been used in pharmaceutical and cosmetic products due to its anti-inflammatory and skin-soothing properties. (-)-α-Bisabolol is currently manufactured mainly by steam-distillation of the essential oils extracted from the Brazilian candeia tree that is under threat because its natural habitat is constantly shrinking. Therefore, microbial production of (-)-α-bisabolol plays a key role in the development of its sustainable production from renewable feedstock. RESULTS: Here, we created an Escherichia coli strain producing (-)-α-bisabolol at high titer and developed an in situ extraction method of (-)-α-bisabolol, using natural vegetable oils. We expressed a recently identified (-)-α-bisabolol synthase isolated from German chamomile (Matricaria recutita) (titer: 3 mg/L), converted the acetyl-CoA to mevalonate, using the biosynthetic mevalonate pathway (12.8 mg/L), and overexpressed farnesyl diphosphate synthase to efficiently supply the (-)-α-bisabolol precursor farnesyl diphosphate. Combinatorial expression of the exogenous mevalonate pathway and farnesyl diphosphate synthase enabled a dramatic increase in (-)-α-bisabolol production in the shake flask culture (80 mg/L) and 5 L bioreactor culture (342 mg/L) of engineered E. coli harboring (-)-α-bisabolol synthase. Fed-batch fermentation using a 50 L fermenter was conducted after optimizing culture conditions, resulting in efficient (-)-α-bisabolol production with a titer of 9.1 g/L. Moreover, a green, downstream extraction process using vegetable oils was developed for in situ extraction of (-)-α-bisabolol during fermentation and showed high yield recovery (>98%). CONCLUSIONS: The engineered E. coli strains and economically viable extraction process developed in this study will serve as promising platforms for further development of microbial production of (-)-α-bisabolol at large scale.

16.
Bioorg Med Chem ; 24(22): 5816-5822, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27670101

ABSTRACT

Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Amino Acids/chemistry , Amino Acids/genetics , Models, Molecular , Molecular Structure , Protein Binding , Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Appl Microbiol Biotechnol ; 100(24): 10453-10461, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27412460

ABSTRACT

Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.


Subject(s)
Protein Engineering/methods , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics
18.
Biotechnol Bioeng ; 112(4): 822-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25323933

ABSTRACT

Recent studies using heterologous protein expression systems suggest that synonymous codons affect not only the expression but also the properties of the expressed protein. However, practical application of this information is challenging, and to date, efforts to employ bioinformatics tools to design synonymous codon mixes have been only marginally successful. Here, we sought to enhance the functional expression of heterologous protein in Escherichia coli through completely random substitution of the first ten codons with synonymous codons, using a previously isolated exocellulase CelEdx-SF301 as the model protein. Synonymous codon variants were generated by PCR using forward primers with mixed nucleotides at the third position in each codon and a conventional reverse primer. The resulting PCR products were inserted upstream of the fluorescent protein mCherry without linkers. After transformation and cultivation, colonies exhibiting red fluorescence were selected, and the activity of SF301-mCherry fusion proteins was tested. Synonymous codon variant fusion proteins exhibited 35- to 530-fold increases in functional expression compared with wild-type controls. Unlike results from other reports, we found that the stability of mRNA secondary structure in the 5' untranslated region and codon rarity were not correlated with functional expression level. Our work demonstrates that a completely random mixed of synonymous codons effectively enhances functional expression levels without the need for amino acid substitutions.


Subject(s)
Cellulases/biosynthesis , Cellulases/genetics , Gene Expression , Point Mutation , Escherichia coli/genetics , Mutagenesis , Mutant Proteins/biosynthesis , Mutant Proteins/genetics , Polymerase Chain Reaction , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
19.
Appl Microbiol Biotechnol ; 98(16): 7081-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24687749

ABSTRACT

Nicotinamide adenine dinucleotide (NADH) oxidase from Streptococcus pyogenes (SpNox) is a flavoprotein harboring one molecule of noncovalently bound flavin adenine dinucleotide. It catalyzes the oxidation of NADH by reducing molecular O2 to H2O directly through a four-electron reduction. In this study, we selected the lysine residues on the surface of SpNox and mutated them into arginine residues to study the effect on the enzyme activity. A single-point mutation (K184R) at the surface of SpNox enhanced NADH oxidase activity by approximately 50 % and improved thermostability with 46.6 % longer half life at 30 °C. Further insights into the function of residue K184 were obtained by substituting it with other nonpolar, polar, positively charged, and negatively charged residues. To elucidate the role of this residue, computer-assisted molecular modeling and substrate docking were performed. The results demonstrate that even a single mutation at the surface of the enzyme induces changes in the interaction at the active site and affects the activity and stability. Additionally, the data also suggest that the K184R mutant can be used as an effective biocatalyst for NAD(+) regeneration in L-rare sugar production.


Subject(s)
Lysine/genetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Streptococcus pyogenes/enzymology , Amino Acid Substitution , Enzyme Stability , Flavoproteins/chemistry , Flavoproteins/genetics , Flavoproteins/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , NAD/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , Oxidation-Reduction , Oxygen/metabolism , Point Mutation , Streptococcus pyogenes/genetics , Temperature , Water/metabolism
20.
J Ginseng Res ; 48(2): 140-148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465212

ABSTRACT

Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.

SELECTION OF CITATIONS
SEARCH DETAIL