Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
PLoS Pathog ; 18(3): e1009983, 2022 03.
Article in English | MEDLINE | ID: mdl-35312737

ABSTRACT

Intracellular transport via microtubule-based dynein and kinesin family motors plays a key role in viral reproduction and transmission. We show here that Kinesin Family Member 4 (KIF4) plays an important role in HBV/HDV infection. We intended to explore host factors impacting the HBV life cycle that can be therapeutically addressed using siRNA library transfection and HBV/NLuc (HBV/NL) reporter virus infection in HepG2-hNTCP cells. KIF4 silencing resulted in a 3-fold reduction in luciferase activity following HBV/NL infection. KIF4 knockdown suppressed both HBV and HDV infection. Transient KIF4 depletion reduced surface and raised intracellular NTCP (HBV/HDV entry receptor) levels, according to both cellular fractionation and immunofluorescence analysis (IF). Overexpression of wild-type KIF4 but not ATPase-null KIF4 mutant regained the surface localization of NTCP and significantly restored HBV permissiveness in these cells. IF revealed KIF4 and NTCP colocalization across microtubule filaments, and a co-immunoprecipitation study revealed that KIF4 interacts with NTCP. KIF4 expression is regulated by FOXM1. Interestingly, we discovered that RXR agonists (Bexarotene, and Alitretinoin) down-regulated KIF4 expression via FOXM1-mediated suppression, resulting in a substantial decrease in HBV-Pre-S1 protein attachment to HepG2-hNTCP cell surface and subsequent HBV infection in both HepG2-hNTCP and primary human hepatocyte (PXB) (Bexarotene, IC50 1.89 ± 0.98 µM) cultures. Overall, our findings show that human KIF4 is a critical regulator of NTCP surface transport and localization, which is required for NTCP to function as a receptor for HBV/HDV entry. Furthermore, small molecules that suppress or alleviate KIF4 expression would be potential antiviral candidates targeting HBV and HDV entry.


Subject(s)
Hepatitis B virus , Hepatitis Delta Virus , Kinesins , Organic Anion Transporters, Sodium-Dependent , Symporters , Virus Internalization , Family , Hep G2 Cells , Hepatitis B virus/physiology , Hepatitis Delta Virus/physiology , Humans , Kinesins/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Retinoid X Receptors/agonists , Symporters/genetics , Symporters/metabolism
2.
Biochem Biophys Res Commun ; 675: 139-145, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37473528

ABSTRACT

Given that the current approved anti-hepatitis B virus (HBV) drugs suppress virus replication and improve hepatitis but cannot eliminate HBV from infected patients, new anti-HBV agents with different mode of action are urgently needed. In this study, we identified a semi-synthetic oxysterol, Oxy185, that can prevent HBV infection in a HepG2-based cell line and primary human hepatocytes. Mechanistically, Oxy185 inhibited the internalization of HBV into cells without affecting virus attachment or replication. We also found that Oxy185 interacted with an HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP), and inhibited the oligomerization of NTCP to reduce the efficiency of HBV internalization. Consistent with this mechanism, Oxy185 also inhibited the hepatitis D virus infection, which relies on NTCP-dependent internalization, but not hepatitis A virus infection, and displayed pan-genotypic anti-HBV activity. Following oral administration in mice, Oxy185 showed sustained accumulation in the livers of the mice, along with a favorable liver-to-plasma ratio. Thus, Oxy185 is expected to serve as a useful tool compound in proof-of-principle studies for HBV entry inhibitors with this novel mode of action.


Subject(s)
Hepatitis B , Symporters , Humans , Mice , Animals , Hepatitis B virus/physiology , Virus Internalization , Hepatitis B/metabolism , Hepatocytes/metabolism , Hep G2 Cells , Hepatitis Delta Virus/metabolism , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism
3.
Cell Microbiol ; 23(12): e13399, 2021 12.
Article in English | MEDLINE | ID: mdl-34729894

ABSTRACT

Hepatitis B virus (HBV) infection is a major health threat causing 880,000 deaths each year. Available therapies control viral replication but do not cure HBV, leaving patients at risk to develop hepatocellular carcinoma. Here, we show that HBV envelope proteins (HBs)-besides their integration into endosomal membranes-become embedded in the plasma membrane where they can be targeted by redirected T-cells. HBs was detected on the surface of HBV-infected cells, in livers of mice replicating HBV and in HBV-induced hepatocellular carcinoma. Staining with HBs-specific recombinant antibody MoMab recognising a conformational epitope indicated that membrane-associated HBs remains correctly folded in HBV-replicating cells in cell culture and in livers of HBV-transgenic mice in vivo. MoMab coated onto superparamagnetic iron oxide nanoparticles allowed to detect membrane-associated HBs after HBV infection by electron microscopy in distinct stretches of the hepatocyte plasma membrane. Last but not least, we demonstrate that HBs located on the cell surface allow therapeutic targeting of HBV-positive cells by T-cells either engrafted with a chimeric antigen receptor or redirected by bispecific, T-cell engager antibodies. TAKE AWAYS: HBs become translocated to the plasma membrane. Novel, recombinant antibody confirmed proper conformation of HBs on the membrane. HBs provide an interesting target by T-cell-based, potentially curative therapies.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B , Animals , Cell Membrane , Hepatitis B/therapy , Hepatitis B virus , Humans , Mice , Viral Envelope Proteins
4.
Proc Natl Acad Sci U S A ; 116(17): 8487-8492, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30952782

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP) is a host cell receptor required for hepatitis B virus (HBV) entry. However, the susceptibility of NTCP-expressing cells to HBV is diverse depending on the culture condition. Stimulation with epidermal growth factor (EGF) was found to potentiate cell susceptibility to HBV infection. Here, we show that EGF receptor (EGFR) plays a critical role in HBV virion internalization. In EGFR-knockdown cells, HBV or its preS1-specific fluorescence peptide attached to the cell surface, but its internalization was attenuated. PreS1 internalization and HBV infection could be rescued by complementation with functional EGFR. Interestingly, the HBV/preS1-NTCP complex at the cell surface was internalized concomitant with the endocytotic relocalization of EGFR. Molecular interaction between NTCP and EGFR was documented by immunoprecipitation assay. Upon dissociation from functional EGFR, NTCP no longer functioned to support viral infection, as demonstrated by either (i) the introduction of NTCP point mutation that disrupted its interaction with EGFR, (ii) the detrimental effect of decoy peptide interrupting the NTCP-EGFR interaction, or (iii) the pharmacological inactivation of EGFR. Together, these data support the crucial role of EGFR in mediating HBV-NTCP internalization into susceptible cells. EGFR thus provides a yet unidentified missing link from the cell-surface HBV-NTCP attachment to the viral invasion beyond the host cell membrane.


Subject(s)
Hepatitis B virus , Organic Anion Transporters, Sodium-Dependent , Symporters , Virus Internalization , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hep G2 Cells , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/genetics , Symporters/metabolism
5.
J Infect Dis ; 223(8): 1376-1380, 2021 04 23.
Article in English | MEDLINE | ID: mdl-32804999

ABSTRACT

A study reported in 2019 showed that hepatitis C virus (HCV) could help disseminate hepatitis D virus (HDV). To test this finding, 2123 plasma samples positive for anti-HCV antibody were screened for anti-HDV antibodies, and HDV-RNA was searched for in samples positive for anti-HDV antibody. Of 41 samples (1.9%) that tested positive for anti-HDV antibody, 27 (65.9%) were positive and 14 (34.1%) negative for antibody to hepatitis B core antigen (anti-HBc). Anti-HDV antibodies were significantly more present in samples positive for anti-HBc (6.21% vs 0.8% in negative samples; P < .001) and in samples negative for HCV RNA (2.9% vs 1.5% for positive samples; P = .03). Serological ratios were significantly higher in samples positive for anti-HBc (P < .01). No anti-HDV-positive sample was HDV RNA positive. In conclusion, this study found no evidence suggesting a role for HCV in HDV dissemination in humans.


Subject(s)
Blood Donors , Hepatitis C , Hepatitis D , Hepacivirus/genetics , Hepatitis Antibodies/blood , Hepatitis B Antibodies , Hepatitis C/epidemiology , Hepatitis D/epidemiology , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/immunology , Humans , RNA, Viral/blood
6.
J Biol Chem ; 295(3): 800-807, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31836663

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the surface of human hepatocytes and functions as an entry receptor of hepatitis B virus (HBV). Recently, we have reported that epidermal growth factor receptor (EGFR) is involved in NTCP-mediated viral internalization during the cell entry process. Here, we analyzed which function of EGFR is essential for mediating HBV internalization. In contrast to the reported crucial function of EGFR-downstream signaling for the entry of hepatitis C virus (HCV), blockade of EGFR-downstream signaling proteins, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT), had no or only minor effects on HBV infection. Instead, deficiency of EGFR endocytosis resulting from either a deleterious mutation in EGFR or genetic knockdown of endocytosis adaptor molecules abrogated internalization of HBV via NTCP and prevented viral infection. EGFR activation triggered a time-dependent relocalization of HBV preS1 to the early and late endosomes and to lysosomes in concert with EGFR transport. Suppression of EGFR ubiquitination by site-directed mutagenesis or by knocking down two EGFR-sorting molecules, signal-transducing adaptor molecule (STAM) and lysosomal protein transmembrane 4ß (LAPTM4B), suggested that EGFR transport to the late endosome is critical for efficient HBV infection. Cumulatively, these results support the idea that the EGFR endocytosis/sorting machinery drives the translocation of NTCP-bound HBV from the cell surface to the endosomal network, which eventually enables productive viral infection.


Subject(s)
Endocytosis/genetics , Endosomes/genetics , ErbB Receptors/genetics , Hepatitis B/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/chemistry , ErbB Receptors/chemistry , Hep G2 Cells , Hepacivirus/chemistry , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B virus/chemistry , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Hepatocytes/metabolism , Hepatocytes/virology , Humans , MAP Kinase Kinase 1/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Organic Anion Transporters, Sodium-Dependent , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , STAT Transcription Factors/genetics , Symporters , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Internalization
7.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748400

ABSTRACT

A substantial number of viruses have been demonstrated to subvert autophagy to promote their own replication. Recent publications have reported the proviral effect of autophagy induction on hepatitis B virus (HBV) replication. Hepatitis delta virus (HDV) is a defective virus and an occasional obligate satellite of HBV. However, no previous work has studied the relationship between autophagy and HDV. In this article, we analyze the impact of HBV and HDV replication on autophagy as well as the involvement of the autophagy machinery in the HDV life cycle when produced alone and in combination with HBV. We prove that HBxAg and HBsAg can induce early steps of autophagy but ultimately block flux. It is worth noting that the two isoforms of the HDV protein, the small HDAg (S-HDAg) and large HDAg (L-HDAg) isoforms, can also efficiently promote autophagosome accumulation and disturb autophagic flux. Using CRISPR-Cas9 technology to generate specific knockouts, we demonstrate that the autophagy machinery, specifically the proteins implicated in the elongation step (ATG7, ATG5, and LC3), is important for the release of HBV without affecting the level of intracellular HBV genomes. Surprisingly, the knockout of ATG5 and ATG7 decreased the intracellular HDV RNA level in both Huh7 and HepG2.2.15 cells without an additional effect on HDV secretion. Therefore, we conclude that HBV and HDV have evolved to utilize the autophagy machinery so as to assist at different steps of their life cycle.IMPORTANCE Hepatitis delta virus is a defective RNA virus that requires hepatitis B virus envelope proteins (HBsAg) to fulfill its life cycle. Thus, HDV can only infect individuals at the same time as HBV (coinfection) or superinfect individuals who are already chronic carriers of HBV. The presence of HDV in the liver accelerates the progression of infection to fibrosis and to hepatic cancer. Since current treatments against HBV are ineffective against HDV, it is of paramount importance to study the interaction between HBV, HDV, and host factors. This will help unravel new targets whereby a therapy that is capable of simultaneously impeding both viruses could be developed. In this research paper, we evidence that the autophagy machinery promotes the replication of HBV and HDV at different steps of their life cycle. Notwithstanding their contribution to HBV release, autophagy proteins seem to assist HDV intracellular replication but not its secretion.


Subject(s)
Autophagy/genetics , Hepatitis Delta Virus/metabolism , Virus Replication/physiology , Cell Line , Coinfection/virology , HEK293 Cells , Hep G2 Cells , Hepatitis B/virology , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis D/virology , Hepatitis Delta Virus/genetics , Hepatitis delta Antigens/metabolism , Humans , Liver/metabolism , RNA, Viral/genetics
8.
Liver Int ; 41(2): 410-419, 2021 02.
Article in English | MEDLINE | ID: mdl-32997847

ABSTRACT

BACKGROUNDS & AIMS: As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM: To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS: Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS: hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION: These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.


Subject(s)
Hepatitis D , Hepatitis Delta Virus , Animals , Hepatitis B virus , Hepatitis Delta Virus/genetics , Hepatocytes , Humans , Mice , Mice, Inbred C57BL , Mice, SCID
9.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808940

ABSTRACT

The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 µM and 99% at 15 µM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 µM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Oxysterols/chemistry , Oxysterols/pharmacology , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Cell Survival/drug effects , Chlorocebus aethiops , Mice , Nucleocapsid Proteins/drug effects , Oxysterols/administration & dosage , Oxysterols/pharmacokinetics , SARS-CoV-2/genetics , Vero Cells , Viral Replication Compartments/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
10.
Gut ; 69(1): 158-167, 2020 01.
Article in English | MEDLINE | ID: mdl-30833451

ABSTRACT

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Subject(s)
Aspartate Carbamoyltransferase/genetics , Aspartic Acid/analogs & derivatives , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Dihydroorotase/genetics , Estrogen Receptor alpha/metabolism , Fulvestrant/pharmacology , Hepatitis D, Chronic/drug therapy , Phosphonoacetic Acid/analogs & derivatives , Pyrimidines/biosynthesis , Antiviral Agents/pharmacology , Aspartate Carbamoyltransferase/antagonists & inhibitors , Aspartate Carbamoyltransferase/metabolism , Aspartic Acid/pharmacology , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/antagonists & inhibitors , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line , Dihydroorotase/antagonists & inhibitors , Dihydroorotase/metabolism , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Gene Silencing , Hepatitis D, Chronic/genetics , Hepatitis D, Chronic/metabolism , Hepatitis Delta Virus/physiology , Hepatocytes , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin Resistance , Life Cycle Stages , Loss of Function Mutation , Phosphonoacetic Acid/pharmacology , RNA Interference , RNA, Small Interfering/genetics , RNA, Viral/metabolism , Signal Transduction , Virus Replication
11.
J Gen Virol ; 101(6): 571-572, 2020 06.
Article in English | MEDLINE | ID: mdl-32416744

ABSTRACT

The family Hepadnaviridae comprises small enveloped viruses with a partially double-stranded DNA genome of 3.0-3.4 kb. All family members express three sets of proteins (preC/C, polymerase and preS/S) and replication involves reverse transcription within nucleocapsids in the cytoplasm of hepatocytes. Hepadnaviruses are hepatotropic and infections may be transient or persistent. There are five genera: Parahepadnavirus, Metahepadnavirus, Herpetohepadnavirus, Avihepadnavirus and Orthohepadnavirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hepadnaviridae, which is available at ictv.global/report/hepadnaviridae.


Subject(s)
Hepadnaviridae/classification , Hepadnaviridae/genetics , Cytoplasm/virology , Genome, Viral/genetics , Hepatocytes/virology , Humans , Virus Replication/genetics
12.
J Virol ; 93(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30541857

ABSTRACT

Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary "arms race" between hepadnaviruses and their hosts. Here, we present evidence suggesting that the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (dN/dS ratio [ratio of nonsynonymous to synonymous evolutionary changes] of <1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7% of NTCP amino acid residues exhibit rapid evolution under positive selection (dN/dS ratio of >1). Notably, a substitution at amino acid (aa) 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested a close association of the aa 158 positive selection with the pressure by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to the host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this NTCP residue. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing adaptive mutation in host receptor.IMPORTANCE HBV and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary arms race between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidence supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species specificity.


Subject(s)
Hepatitis B virus/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Receptors, Virus/genetics , Symporters/genetics , Viral Envelope Proteins/genetics , Virus Attachment , Virus Internalization , Amino Acid Substitution/genetics , Cell Line, Tumor , Evolution, Molecular , Hep G2 Cells , Hepatitis B/genetics , Hepatitis B/virology , Hepatitis B virus/growth & development , Humans , Phylogeny , Species Specificity , Viral Envelope Proteins/metabolism
13.
Gut ; 68(1): 150-157, 2019 01.
Article in English | MEDLINE | ID: mdl-29217749

ABSTRACT

OBJECTIVE: Hepatitis delta virus (HDV) was shown to persist for weeks in the absence of HBV and for months after liver transplantation, demonstrating the ability of HDV to persevere in quiescent hepatocytes. The aim of the study was to evaluate the impact of cell proliferation on HDV persistence in vitro and in vivo. DESIGN: Genetically labelled human sodium taurocholate cotransporting polypeptide (hNTCP)-transduced human hepatoma(HepG2) cells were infected with HBV/HDV and passaged every 7 days for 100 days in the presence of the entry inhibitor Myrcludex-B. In vivo, cell proliferation was triggered by transplanting primary human hepatocytes (PHHs) isolated from HBV/HDV-infected humanised mice into naïve recipients. Virological parameters were measured by quantitative real time polymerase chain reaction (qRT-PCR). Hepatitis delta antigen (HDAg), hepatitis B core antigen (HBcAg) and cell proliferation were determined by immunofluorescence. RESULTS: Despite 15 in vitro cell passages and block of viral spreading by Myrcludex-B, clonal cell expansion permitted amplification of HDV infection. In vivo, expansion of PHHs isolated from HBV/HDV-infected humanised mice was confirmed 3 days, 2, 4 and 8 weeks after transplantation. While HBV markers rapidly dropped in proliferating PHHs, HDAg-positive hepatocytes were observed among dividing cells at all time points. Notably, HDAg-positive cells appeared in clusters, indicating that HDV was transmitted to daughter cells during liver regeneration even in the absence of de novo infection. CONCLUSION: This study demonstrates that HDV persists during liver regeneration by transmitting HDV RNA to dividing cells even in the absence of HBV coinfection. The strong persistence capacities of HDV may also explain why HDV clearance is difficult to achieve in HBV/HDV chronically infected patients.


Subject(s)
Coinfection/virology , Hepatitis B/virology , Hepatitis D/virology , Hepatitis Delta Virus/metabolism , Liver Regeneration , Animals , Cell Division , Cell Line , Cell Proliferation , Fluorescent Antibody Technique , Humans , Mice , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction
14.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29212929

ABSTRACT

In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 µM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation.IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 µM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated with HBV immune escape.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis Delta Virus/drug effects , Nucleic Acids/pharmacology , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Cell Line, Tumor , Hepatitis B virus , Hepatitis Delta Virus/physiology , Humans , Polymers/pharmacology , Viral Envelope Proteins/genetics , Virion/drug effects , Virus Replication/drug effects
15.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29743374

ABSTRACT

During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (i) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (ii) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required but could stimulate empty virion secretion. Also, substitutions in L that eliminated secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that blocked secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids and mature nucleocapsids interact with the S and L proteins during the formation of complete and empty virions.IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases, including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV-infected cells also secrete noninfectious, incomplete viral particles in large excess over the number of complete virions. In particular, the empty (or genome-free) virion shares with the complete virion the outer envelope and interior capsid but contains no genome. We have carried out a comparative study on the capsid and envelope requirements for the secretion of these two types of virion particles and uncovered both shared and distinct determinants on the capsid and envelope for their secretion. These results provide new information on HBV morphogenesis and have implications for efforts to develop empty HBV virions as novel biomarkers and a new generation of HBV vaccine.


Subject(s)
Biomarkers/metabolism , Capsid Proteins/metabolism , Capsid/metabolism , Hepatitis B virus/physiology , Hepatitis B/virology , Viral Envelope Proteins/metabolism , Virion/physiology , DNA, Viral , Genome, Viral , Humans , Nucleocapsid/physiology , RNA, Viral , Virus Assembly , Virus Replication
16.
Hepatology ; 67(6): 2127-2140, 2018 06.
Article in English | MEDLINE | ID: mdl-29251788

ABSTRACT

Nucleic acid polymer (NAP) REP 2139 treatment was shown to block the release of viral surface antigen in duck HBV (DHBV)-infected ducks and in patients with chronic HBV or HBV/hepatitis D virus infection. In this preclinical study, a combination therapy consisting of REP 2139 with tenofovir disoproxil fumarate (TDF) and entecavir (ETV) was evaluated in vivo in the chronic DHBV infection model. DHBV-infected duck groups were treated as follows: normal saline (control); REP 2139 TDF; REP 2139 + TDF; and REP 2139 + TDF + ETV. After 4 weeks of treatment, all animals were followed for 8 weeks. Serum DHBsAg and anti-DHBsAg antibodies were monitored by enzyme-linked immunosorbent assay and viremia by qPCR. Total viral DNA and covalently closed circular DNA (cccDNA) were quantified in autopsy liver samples by qPCR. Intrahepatic DHBsAg was assessed at the end of follow-up by immunohistochemistry. On-treatment reduction of serum DHBsAg and viremia was more rapid when REP 2139 was combined with TDF or TDF and ETV, and, in contrast to TDF monotherapy, no viral rebound was observed after treatment cessation. Importantly, combination therapy resulted in a significant decrease in intrahepatic viral DNA (>3 log) and cccDNA (>2 log), which were tightly correlated with the clearance of DHBsAg in the liver. CONCLUSION: Synergistic antiviral effects were observed when REP 2139 was combined with TDF or TDF + ETV leading to control of infection in blood and liver, associated with intrahepatic viral surface antigen elimination that persisted after treatment withdrawal. Our findings suggest the potential of developing such combination therapy for treatment of chronically infected patients in the absence of pegylated interferon. (Hepatology 2018;67:2127-2140).


Subject(s)
Antiviral Agents/administration & dosage , Guanine/analogs & derivatives , Hepadnaviridae Infections/drug therapy , Hepatitis B Virus, Duck/drug effects , Hepatitis, Viral, Animal/drug therapy , Nucleic Acids/administration & dosage , Polymers/administration & dosage , Tenofovir/administration & dosage , Animals , Chronic Disease , Drug Synergism , Drug Therapy, Combination , Ducks , Guanine/administration & dosage
17.
J Gen Virol ; 99(12): 1565-1566, 2018 12.
Article in English | MEDLINE | ID: mdl-30311870

ABSTRACT

Hepatitis delta virus, the only member of the only species in the genus Deltavirus, is a unique human pathogen. Its ~1.7 kb circular negative-sense RNA genome encodes a protein, hepatitis delta antigen, which occurs in two forms, small and large, both with unique functions. Hepatitis delta virus uses host RNA polymerase II to replicate via double rolling circle RNA synthesis. Newly synthesized linear RNAs are circularized after autocatalytic cleavage and ligation. Hepatitis delta virus requires the envelope of the helper virus, hepatitis B virus (family Hepadnaviridae), to produce infectious particles. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Deltavirus which is available at www.ictv.global/report/deltavirus.


Subject(s)
Hepatitis D/virology , Hepatitis Delta Virus/classification , Hepatitis Delta Virus/genetics , RNA, Viral/genetics , Genome, Viral , Helper Viruses/physiology , Hepatitis B virus/physiology , Hepatitis Delta Virus/growth & development , Host-Pathogen Interactions , Humans , RNA/genetics , RNA/metabolism , RNA Polymerase II/metabolism , RNA, Circular , RNA, Viral/metabolism , Viral Envelope Proteins/metabolism , Virus Replication
18.
Biochem Biophys Res Commun ; 501(2): 374-379, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29730285

ABSTRACT

Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/drug effects , High-Throughput Screening Assays/methods , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B virus/pathogenicity , Hepatitis D/drug therapy , Humans , Molecular Targeted Therapy/methods , Protein Precursors/metabolism , Sirolimus/pharmacology , Small Molecule Libraries/pharmacology , Virus Internalization/drug effects
19.
Hepatology ; 65(4): 1104-1116, 2017 04.
Article in English | MEDLINE | ID: mdl-27863453

ABSTRACT

Introduction of direct-acting antivirals against hepatitis C virus (HCV) has provided a revolutionary improvement in the treatment outcome. In contrast to HCV, however, the strategy for developing new antiviral agents against hepatitis B virus (HBV), especially viral-targeting compounds, is limited because HBV requires only four viral genes for its efficient replication/infection. Here, we identify an oligomeric flavonoid, proanthocyanidin (PAC) and its analogs, which inhibit HBV entry into host cells by targeting the HBV large surface protein (LHBs). Through cell-based chemical screening, PAC was identified to inhibit HBV infection with little cytotoxic effect. PAC prevented the attachment of the preS1 region in the LHBs to its cellular receptor, sodium taurocholate cotransporting polypeptide (NTCP). PAC was shown to target HBV particles and impair their infectivity, whereas it did not affect the NTCP-mediated bile acid transport activity. Chemical biological techniques demonstrated that PAC directly interacted with the region essential for receptor binding in the preS1 region in the LHBs protein. Importantly, PAC had a pan-genotypic anti-HBV activity and was also effective against a clinically relevant nucleoside analog-resistant HBV isolate. We further showed that PAC augmented the ability of a nucleoside analog, tenofovir, to interrupt HBV spread over time in primary human hepatocytes by cotreatment. Moreover, derivative analysis could identify small molecules that demonstrated more-potent anti-HBV activity over PAC. CONCLUSION: PAC and its analogs represent a new class of anti-HBV agents that directly target the preS1 region of the HBV large surface protein. These agents could contribute to the development of a potent, well-tolerated, and broadly active inhibitor of HBV infection. (Hepatology 2017;65:1104-1116).


Subject(s)
Hepatitis B/drug therapy , Hepatitis B/genetics , Hepatitis D/drug therapy , Hepatitis D/genetics , Proanthocyanidins/administration & dosage , Viral Structural Proteins/drug effects , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Forecasting , Genotype , Hepatitis B/diagnosis , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis D/diagnosis , Hepatitis Delta Virus/drug effects , Hepatitis Delta Virus/genetics , Humans , Molecular Targeted Therapy/trends , Viral Structural Proteins/genetics
20.
J Hepatol ; 66(4): 685-692, 2017 04.
Article in English | MEDLINE | ID: mdl-27890789

ABSTRACT

BACKGROUND & AIMS: The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. METHODS: We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. RESULTS: We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC50. Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. CONCLUSIONS: This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. LAY SUMMARY: In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects.


Subject(s)
Cyclosporins/pharmacology , Hepatitis B virus/drug effects , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Virus Internalization/drug effects , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Bile Acids and Salts/metabolism , Cells, Cultured , Cyclosporins/adverse effects , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis Delta Virus/drug effects , Hepatitis Delta Virus/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL