Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 14(18): e1701885, 2018 May.
Article in English | MEDLINE | ID: mdl-28977736

ABSTRACT

Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m-2 h-1 bar-1 , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

2.
Membranes (Basel) ; 13(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623795

ABSTRACT

Blend membranes consisting of two polymer pairs improve gas separation, but compromise mechanical and thermal properties. To address this, incorporating titanium dioxide (TiO2) nanoparticles has been suggested, to enhance interactions between polymer phases. Therefore, the objective of this study was to investigate the impact of TiO2 as a filler on the thermal, surface mechanical, as well as gas separation properties of blend membranes. Blend polymeric membranes consisting of polyetherimide (PEI) and polyvinyl acetate (PVAc) with blend ratios of (99:1) and (98:2) were developed via a wet-phase inversion technique. In the latter, TiO2 was incorporated in ratios of 1 and 2 wt.% while maintaining a blend ratio of (98:2). TGA and DSC analyses were used to examine thermal properties, and nano-indentation tests were carried out to ascertain surface mechanical characteristics. On the other hand, a gas permeation set-up was used to determine gas separation performance. TGA tests showed that blend membranes containing TiO2 had better thermal characteristics. Indentation tests showed that TiO2-containing membranes exhibited greater surface hardness compared to other membranes. The results of gas permeation experiments showed that TiO2-containing membranes had better separation characteristics. PEI-PVAc blend membranes with 2 wt.% TiO2 as filler displayed superior separation performance for both gas pairs (CO2/CH4 and CO2/N2). The compatibility between the rubbery and glassy phases of blend membranes was improved as a result of the inclusion of TiO2, which further benefited their thermal, surface mechanical, and gas separation performances.

3.
Chemosphere ; 321: 138074, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780999

ABSTRACT

A clean and sustainable energy source, biogas is widely accessible worldwide. The caloric value of biogas is related to its methane content, and therefore removal of other gases is essential for reaping the benefits of this cleaner resource. In contrast to other classical techniques, membrane technology is relatively new yet extremely promising for methane enrichment. The methane enrichment performance of polymeric membranes is constrained, hence newer material combinations have been investigated to enhance membrane performance. In this study, blend membranes comprised of polyetherimide (PEI) and polyvinyl acetate (PVAc) in varying proportions were prepared by adopting the wet-phase inversion technique. The generated pure, and blend membranes were characterized for the morphological, thermal, and structural study. The interactions of PEI and PVAc in blend samples were verified by FTIR analysis. On the other hand, SEM investigation indicated that the membranes have an anisotropic porous structure with a dense skin layer at the top. Subsequently, a single glass transition temperature (Tg), as validated by DSC analysis, indicates that the blended polymers are miscible. Furthermore, membranes' performance for gas separation was assessed regarding selectivity and permeance at feed pressures ranging from 2 to 6 bar. The permeation results showed that the CO2 permeance has increased by 40.47% with the addition of 4 wt % PVAc at 2 bar pressure. Furthermore, ideal selectivity improves as the blend ratio increases; nonetheless, the highest value for CO2/CH4 ideal selectivity was attained with a 2 wt % PVAc addition and at 2 bar pressure, which is approximately 26% greater than the pure PEI membrane. At 4 bar pressure, optimum CO2/N2 selectivity value of 22.50 was achieved. The findings indicate that PVAc is an excellent option for expanding the separation performance of blended polymeric membranes for biogas enrichment.


Subject(s)
Carbon Dioxide , Methane , Carbon Dioxide/chemistry , Methane/chemistry , Biofuels , Polymers/chemistry , Gases/chemistry
4.
Nanoscale Adv ; 5(2): 412-424, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756269

ABSTRACT

The chemical vapor deposition of polycrystalline diamond (PCD) films is typically done on substrates seeded with diamond nanoparticles. Specular laser reflectance has been used in tandem with a continuous film model to monitor the thickness of these films during their deposition. However, approaches to gain information on properties that strongly affect film morphology, such as the areal density of seeds, remain largely unexplored. This work outlines a strategy for using laser reflectance measurements to refine the monitoring of film thickness during deposition, estimate the mean equivalent radii and the areal density of seeds, and estimate growth incubation periods. We present a general model based on the Rayleigh theory of scattering for laser reflectance at substrates with growing nanoparticles that captures the early stages of PCD deposition. We test our model experimentally by depositing diamond under identical conditions on silicon substrates with various seed densities and by comparing seed densities obtained by scanning electron microscopy to those determined by our strategy. We also explore the different deposition stages for which our model and a continuous film model can be used safely. In addition to providing guidelines for characterizing PCD deposition, this work may also advance the general understanding of nanoparticle growth and formation.

5.
Nanoscale ; 13(3): 1639-1651, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33399605

ABSTRACT

Polymer-nanodiamond composites are excellent candidates for the fabrication of multifunctional hybrid materials. They integrate polymer flexibility and exceptional properties of nanodiamonds (NDs), such as biocompatibility, mechanical strength, color centers, and chemically-tailored surfaces. However, their development is hindered by the challenge of ensuring that NDs are homogeneously distributed in the composites. Here, we exploit colloidal coassembly between poly(isoprene-b-styrene-b-2-vinyl pyridine) (ISV) block copolymers (BCPs) and NDs to avoid ND self-agglomeration and direct ND spatial distribution. NDs were first air oxidized at 450 °C to obtain stable dispersions in dimethylacetamide (DMAc). By adding ISV into the dispersions, patchy hybrid micelles were formed due to H-bonds between NDs and ISV. The ISV-ND coassembly in DMAc was then used to fabricate nanocomposite films with a uniform sub-50 nm ND distribution, which has never been previously reported for an ND loading (φND) of more than 50 wt%. The films exhibit good transparency due to their well-defined nanostructures and smoothness and also exhibit an improved UV-absorption and hydrophilicity compared to neat ISV. More intriguingly, at a φND of 22 wt%, ISV and NDs coassemble into a network-like superstructure with well-aligned ND strings via a dialysis method. Transmission electron microscopy and dynamic light scattering measurements suggest a complex interplay between polymer-polymer, polymer-solvent, polymer-ND, ND-solvent, and ND-ND interactions during the formation of structures. Our work may provide an important foundation for the development of hierarchically ordered nanocomposites based on BCP-ND coassembly, which is beneficial for a wide spectrum of applications from biotechnology to quantum devices.

6.
Nanoscale ; 12(43): 22059-22069, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33047750

ABSTRACT

A prevalent strategy for synthesizing patchy nanoparticles is through the self-assembly of triblock terpolymers in selective solvents. Since the thermodynamic and kinetic factors that govern the morphology of the particles produced in this way are not fully understood, this strategy usually demands trial-and-error methodologies. We investigate the fundamental mechanisms that produce multiple types of patchy nanoparticles and identify the conditions needed to program the shapes of the nanoparticles and predict their assembly. Our findings demonstrate that particle morphology can be described in a generic fashion by accounting for the energetic balance between the conformation of the polymer coils and the formation of interfaces. This allows us to forecast the synthesis of patchy nanoparticles for systems with different triblock terpolymers and solvents. Since the shape, size, and distribution of the patches influence the growth of larger microscale structures, we construct a library of elemental nanoparticles, or building blocks, suitable for the study of hierarchically larger self-assembled aggregates and useful for streamlining the design of functional materials. Our results provide new insights into the intriguing mechanisms that determine the morphology of soft nanoscale objects, whether synthetic or naturally occurring.

7.
Chem Commun (Camb) ; 53(49): 6609-6612, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28581552

ABSTRACT

We combine self-assembly in solution, complexation with metallic salts and phase separation induced by solvent-non-solvent exchange to prepare nanostructured membranes for separation in the nanofiltration range. This method was applied to prepare membranes from newly synthesized poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) copolymers dissolved in a selective solvent mixture and immersed in aqueous Cu2+ or Ag+ solutions.

SELECTION OF CITATIONS
SEARCH DETAIL