Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cancer Sci ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860412

ABSTRACT

Metastatic spinal tumors are increasingly prevalent due to advancements in cancer treatment, leading to prolonged survival rates. This rising prevalence highlights the need for developing more effective therapeutic approaches to address this malignancy. Boron neutron capture therapy (BNCT) offers a promising solution by delivering targeted doses to tumors while minimizing damage to normal tissue. In this study, we evaluated the efficacy and safety of BNCT as a potential therapeutic option for spine metastases in mouse models induced by A549 human lung adenocarcinoma cells. The animal models were randomly allocated into three groups: untreated (n = 10), neutron irradiation only (n = 9), and BNCT (n = 10). Each mouse was administered 4-borono-L-phenylalanine (250 mg/kg) intravenously, followed by measurement of boron concentrations 2.5 h later. Overall survival, neurological function of the hindlimb, and any adverse events were assessed post irradiation. The tumor-to-normal spinal cord and blood boron concentration ratios were 3.6 and 2.9, respectively, with no significant difference observed between the normal and compressed spinal cord tissues. The BNCT group exhibited significantly prolonged survival rates compared with the other groups (vs. untreated, p = 0.0015; vs. neutron-only, p = 0.0104, log-rank test). Furthermore, the BNCT group demonstrated preserved neurological function relative to the other groups (vs. untreated, p = 0.0004; vs. neutron-only, p = 0.0051, multivariate analysis of variance). No adverse events were observed post irradiation. These findings indicate that BNCT holds promise as a novel treatment modality for metastatic spinal tumors.

2.
J Neurooncol ; 168(1): 91-97, 2024 May.
Article in English | MEDLINE | ID: mdl-38598087

ABSTRACT

PURPOSE: Boron neutron capture therapy (BNCT) is a tumor cell-selective particle-radiation therapy. In BNCT, administered p-boronophenylalanine (BPA) is selectively taken up by tumor cells, and the tumor is irradiated with thermal neutrons. High-LET α-particles and recoil 7Li, which have a path length of 5-9 µm, are generated by the capture reaction between 10B and thermal neutrons and selectively kill tumor cells that have uptaken 10B. Although BNCT has prolonged the survival time of malignant glioma patients, recurrences are still to be resolved. miRNAs, that are encapsulated in small extracellular vesicles (sEVs) in body fluids and exist stably may serve critical role in recurrence. In this study, we comprehensively investigated microRNAs (miRNAs) in sEVs released from post-BNCT glioblastoma cells. METHOD: Glioblastoma U87 MG cells were treated with 25 ppm of BPA in the culture media and irradiated with thermal neutrons. After irradiation, they were plated into dishes and cultured for 3 days in the 5% CO2 incubator. Then, sEVs released into the medium were collected by column chromatography, and miRNAs in sEVs were comprehensively investigated using microarrays. RESULT: An increase in 20 individual miRNAs (ratio > 2) and a decrease in 2 individual miRNAs (ratio < 0.5) were detected in BNCT cells compared with non-irradiated cells. Among detected miRNAs, 20 miRNAs were associated with worse prognosis of glioma in Kaplan Meier Survival Analysis of overall survival in TCGA. CONCLUSION: These miRNA after BNCT may proceed tumors, modulate radiation resistance, or inhibit invasion and affect the prognosis of glioma.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Extracellular Vesicles , Glioblastoma , MicroRNAs , Boron Neutron Capture Therapy/methods , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/radiation effects , MicroRNAs/metabolism , MicroRNAs/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/radiation effects
3.
Chem Biodivers ; : e202400833, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959122

ABSTRACT

Seaweeds of the red algal genus Laurencia are widely distributed worldwide in tropical, subtropical to temperate zones, and grow in Japan from Hokkaido to Okinawa. Laurencia is one of the most studied seaweeds by organic chemists because it produces a variety of compounds with unique structures. In Japan, various halogenated compounds have been found in Laurencia, while some species do not produce any halogenated compounds. Laurencia is one of the most difficult seaweeds to classify morphologically; however, the major halogenated secondary metabolites produced tend to be species-specific, and these compounds can be used as chemical markers for chemical systematics (chemotaxonomy). Similarly, it has been confirmed that domestic Laurencia species produce species-specific halogenated compounds of certain types. Laurencia is one of the "weedy seaweeds" that have not been effectively utilized at present, but it produces a wide variety of metabolites, so there is a good possibility that compounds with specific activity may be found. Thus, it can be seen that the secondary metabolites in Laurencia have many interesting aspects. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.

4.
Chembiochem ; 24(15): e202300186, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37069129

ABSTRACT

Minimally invasive boron neutron capture therapy (BNCT) is an elegant approach for cancer treatment. The highly selective and efficient deliverability of boron agents to cancer cells is the key to maximizing the therapeutic benefits of BNCT. In addition, enhancement of the frequencies to achieve boron neutron capture reaction is also significant in improving therapeutic efficacy by providing a highly concentrated boron agent in each boron nanoparticle. As the density of the thermal neutron beam remains low, it is unable to induce high-efficiency cell destruction. Herein, we report phospholipid-coated boronic oxide nanoparticles as agents for BNCT that can provide a highly concentrated boron atom in each nanoparticle. The current system exhibited in vitro BNCT activity seven times higher than that of commercial boron agents. Furthermore, the system could penetrate cancer spheroids deeply, efficiently suppressing thermal neutron irradiation-induced growth.


Subject(s)
Boron Neutron Capture Therapy , Nanoparticles , Boron , Phospholipids , Boron Compounds/therapeutic use , Oxides
5.
Chemistry ; 29(63): e202302073, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37589488

ABSTRACT

Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.


Subject(s)
Boron Neutron Capture Therapy , Nanodiamonds , Neoplasms , Mice , Animals , Boron , Glycerol , Boron Compounds
6.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37792507

ABSTRACT

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Humans , Liposomes , Boron Neutron Capture Therapy/methods , Boron , Boron Compounds , Fructose
7.
Mol Pharm ; 20(12): 6311-6318, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37909734

ABSTRACT

Noninvasive monitoring of boron agent biodistribution is required in advance of neutron capture therapy. In this study, we developed a gadolinium-boron-conjugated albumin (Gd-MID-BSA) for MRI-guided neutron capture therapy. Gd-MID-BSA was prepared by labeling bovine serum albumin with a maleimide-functionalized gadolinium complex and a maleimide-functionalized closo-dodecaborate orthogonally. The accumulation of Gd-MID-BSA in tumors in CT26 tumor-bearing mice reached a maximum at 24 h after the injection, as confirmed by T1-based MRI and biodistribution analysis using inductively coupled plasma optical emission spectrometry. The concentrations of boron and gadolinium in the tumors exceeded the thresholds required for boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT), respectively. The boron concentration ratios of tumor to blood and tumor to normal tissues satisfied the clinical criteria, indicating the reduction of undesired nuclear reactions of endogenous nuclei. The molar ratio of boron to gadolinium in the tumor was close to that of Gd-MID-BSA, demonstrating that the accumulation of Gd-MID-BSA in the tumor can be evaluated by MRI. Thermal neutron irradiation with Gd-MID-BSA resulted in significant suppression of tumor growth compared to the group injected with a boron-conjugated albumin without gadolinium (MID-BSA). The neutron irradiation with Gd-MID-BSA did not cause apparent side effects. These results demonstrate that the conjugation of gadolinium and boron within the albumin molecule offers a novel strategy for enhancing the therapeutic effect of BNCT and the potential of MRI-guided neutron capture therapy as a promising treatment for malignant tumors.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Neutron Capture Therapy , Mice , Animals , Boron , Gadolinium , Tissue Distribution , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Neoplasms/drug therapy , Neutron Capture Therapy/methods , Magnetic Resonance Imaging/methods , Boron Neutron Capture Therapy/methods , Maleimides
8.
Int J Clin Oncol ; 28(2): 201-208, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35556190

ABSTRACT

The effects of irradiation on tumor tissue and the host immune system are interrelated. The antitumor effect of irradiation is attenuated in the immunocompromised hosts. In addition, radiation alone positively and negatively influences the host immune system. The positive effects of radiation are summarized by the ability to help induce and enhance tumor-antigen-specific immune responses. The cancer-immunity cycle is a multistep framework that illustrates how the tumor-antigen-specific immune responses are induced and how the induced antigen-specific immune cells exert their functions in tumor tissues. Irradiation affects each step of this cancer-immunity cycle, primarily in a positive manner. In contrast, radiation also has negative effects on the immune system. The first is that irradiation has the possibility to kill irradiated effector immune cells. The second is that irradiation upregulates immunosuppressive molecules in the tumor microenvironment, whereas the third is that irradiation to the tumor condenses immunosuppressor cells in the tumor microenvironment. When used in conjunction with radiotherapy, immune checkpoint inhibitors can further leverage the positive effects of radiation on the immune system and compensate for the negative effects of irradiation, which supports the rationale for the combination of radiotherapy and immune checkpoint inhibitors. In this review, we summarize the preclinical evidence for the reciprocal effects of radiation exposure and the immune system, and up-front topics of the combination therapy of immune checkpoint inhibitors and radiotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Antigens, Neoplasm , Immune System/pathology , Immune System/radiation effects , Combined Modality Therapy , Tumor Microenvironment , Immunotherapy , Radiotherapy
9.
Nanomedicine ; 49: 102659, 2023 04.
Article in English | MEDLINE | ID: mdl-36822335

ABSTRACT

Boron neutron capture therapy shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing pullulan nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells in vitro. The accumulation of HBNGs in tumors, due to the enhanced permeation and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Humans , Nanogels , Boron , Neoplasms/radiotherapy , Neoplasms/drug therapy , Boron Compounds , Fructose
10.
Int J Mol Sci ; 24(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37108137

ABSTRACT

New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.


Subject(s)
Boron Neutron Capture Therapy , Glioma , Humans , Boron Neutron Capture Therapy/methods , Ligands , Virus Internalization , Boron Compounds/pharmacology
11.
Small ; 18(37): e2204044, 2022 09.
Article in English | MEDLINE | ID: mdl-35983628

ABSTRACT

Boron neutron capture therapy (BNCT) is a non-invasive cancer treatment with little adverse effect utilizing nuclear fission of 10 B upon neutron irradiation. While neutron source has been developed from a nuclear reactor to a compact accelerator, only two kinds of drugs, boronophenylalanine and sodium borocaptate, have been clinically used for decades despite their low tumor specificity and/or retentivity. To overcome these challenges, various boron-containing nanomaterials, or "nanosensitizers", have been designed based on micelles, (bio)polymers and inorganic nanoparticles. Among them, inorganic nanoparticles such as boron carbide can include a much higher 10 B content, but successful in vivo applications are very limited. Additionally, recent reports on the photothermal effect of boron carbide are motivating for the addition of another modality of photothermal therapy. In this study, 10 B enriched boron carbide (10 B4 C) nanoparticle is functionalized with polyglycerol (PG), giving 10 B4 C-PG with enough dispersibility in a physiological environment. Pharmacokinetic experiments show that 10 B4 C-PG fulfills the following three requirements for BNCT; 1) low intrinsic toxicity, 2) 10 B in tumor/tumor tissue (wt/wt) ≥ 20 ppm, and 3) 10 B concentrations in tumor/blood ≥ 3. In vivo study reveals that neutron irradiation after intravenous administration of 10 B4 C-PG suppresses cancer growth significantly and eradicates cancer with the help of near-infrared light irradiation.


Subject(s)
Boron Neutron Capture Therapy , Nanoparticles , Neoplasms , Boron/pharmacology , Boron Compounds/pharmacology , Glycerol , Humans , Neoplasms/drug therapy , Neutrons , Photothermal Therapy , Polymers
12.
Invest New Drugs ; 40(2): 255-264, 2022 04.
Article in English | MEDLINE | ID: mdl-34816337

ABSTRACT

Introduction Boron neutron capture therapy (BNCT) is a biologically targeted, cell-selective particle irradiation therapy that utilizes the nuclear capture reaction of boron and neutron. Recently, accelerator neutron generators have been used in clinical settings, and expectations for developing new boron compounds are growing. Methods and Results In this study, we focused on serum albumin, a well-known drug delivery system, and developed maleimide-functionalized closo-dodecaborate albumin conjugate (MID-AC) as a boron carrying system for BNCT. Our biodistribution experiment involved F98 glioma-bearing rat brain tumor models systemically administered with MID-AC and demonstrated accumulation and long retention of boron. Our BNCT study with MID-AC observed statistically significant prolongation of the survival rate compared to the control groups, with results comparable to BNCT study with boronophenylalanine (BPA) which is the standard use of in clinical settings. Each median survival time was as follows: untreated control group; 24.5 days, neutron-irradiated control group; 24.5 days, neutron irradiation following 2.5 h after termination of intravenous administration (i.v.) of BPA; 31.5 days, and neutron irradiation following 2.5 or 24 h after termination of i.v. of MID-AC; 33.5 or 33.0 days, respectively. The biological effectiveness factor of MID-AC for F98 rat glioma was estimated based on these survival times and found to be higher to 12. This tendency was confirmed in BNCT 24 h after MID-AC administration. Conclusion MID-AC induces an efficient boron neutron capture reaction because the albumin contained in MID-AC is retained in the tumor and has a considerable potential to become an effective delivery system for BNCT in treating high-grade gliomas.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Glioma , Albumins , Animals , Boron/therapeutic use , Boron Compounds/therapeutic use , Boron Neutron Capture Therapy/methods , Brain Neoplasms/drug therapy , Glioma/pathology , Humans , Maleimides , Rats , Tissue Distribution
13.
Jpn J Clin Oncol ; 52(5): 433-440, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35079791

ABSTRACT

BACKGROUND: Although boron neutron capture therapy has shown excellent survival data, previous studies have shown an increase in radiation necrosis against recurrent malignant glioma. Herein, we proposed that bevacizumab may reduce radiation injury from boron neutron capture therapy by re-irradiation. We evaluated the efficacy and safety of a boron neutron capture therapy and add-on bevacizumab combination therapy in patients with recurrent malignant glioma. METHODS: Patients with recurrent malignant glioma were treated with reactor-based boron neutron capture therapy. Treatment with bevacizumab (10 mg/kg) was initiated 1-4 weeks after boron neutron capture therapy and was administered every 2-3 weeks until disease progression. Initially diagnosed glioblastomas were categorized as primary glioblastoma, whereas other forms of malignant glioma were categorized as non-primary glioblastoma. RESULTS: Twenty-five patients (14 with primary glioblastoma and 11 with non-primary glioblastoma) were treated with boron neutron capture therapy and add-on bevacizumab. The 1-year survival rate for primary glioblastoma and non-primary glioblastoma was 63.5% (95% confidence interval: 33.1-83.0) and 81.8% (95% confidence interval: 44.7-95.1), respectively. The median overall survival was 21.4 months (95% confidence interval: 7.0-36.7) and 73.6 months (95% confidence interval: 11.4-77.2) for primary glioblastoma and non-primary glioblastoma, respectively. The median progression-free survival was 8.3 months (95% confidence interval: 4.2-12.1) and 15.6 months (95% confidence interval: 3.1-29.8) for primary glioblastoma and non-primary glioblastoma, respectively. Neither pseudoprogression nor radiation necrosis were identified during bevacizumab treatment. Alopecia occurred in all patients. Six patients experienced adverse events ≥grade 3. CONCLUSIONS: Boron neutron capture therapy and add-on bevacizumab provided a long overall survival and a long progression-free survival in recurrent malignant glioma compared with previous studies on boron neutron capture therapy alone. The add-on bevacizumab may reduce the detrimental effects of boron neutron capture therapy, including pseudoprogression and radiation necrosis. Further studies of the combination therapy with a larger sample size and a randomized controlled design are warranted.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Glioblastoma , Glioma , Radiation Injuries , Bevacizumab/therapeutic use , Boron Neutron Capture Therapy/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Glioma/drug therapy , Glioma/radiotherapy , Humans , Necrosis/etiology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/radiotherapy , Radiation Injuries/etiology
14.
Biochem Biophys Res Commun ; 559: 210-216, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33957482

ABSTRACT

In cancer therapeutics, boron neutron capture therapy (BNCT) requires a platform for selective and efficient 10B delivery into tumor tissues for a successful treatment. However, the use of carborane, a promising candidate with high boron content and biostability, has significant limitations in the biomedical field due to its poor water-solubility and tumor-selectivity. To overcome these hurdles, we present in this study a fluorescent nano complex, combining fluorescent carborane and sodium hyaluronate for high boron concentration and tumor-selectivity. Tumor cells actively internalized the complex through binding hyaluronan to CD44, overexpressed on the tumor cell surface. Furthermore, the subcellular distribution of this complex could also be detected due to its fluorescent properties. Moreover, after thermal neutron irradiations, the complex produced excellent cytotoxicity, equal to or greater than that of the clinically-used BPA-fructose. Therefore, this novel complex could be potentially more suitable for BNCT than the boron agent.


Subject(s)
Boranes/therapeutic use , Boron Neutron Capture Therapy , Hyaluronic Acid/therapeutic use , Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Survival , Humans , Hyaluronic Acid/ultrastructure , Mice , RAW 264.7 Cells
15.
BMC Cancer ; 21(1): 72, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33446132

ABSTRACT

BACKGROUND: p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). METHODS: (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. RESULTS: Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10-20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. CONCLUSIONS: We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs.


Subject(s)
Annexin A1/metabolism , Boron Compounds/administration & dosage , Boron Neutron Capture Therapy/methods , Neovascularization, Pathologic/radiotherapy , Peptide Fragments/metabolism , Phenylalanine/analogs & derivatives , Urinary Bladder Neoplasms/radiotherapy , Animals , Apoptosis , Boron Compounds/chemistry , Boron Compounds/metabolism , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Phenylalanine/metabolism , Tumor Cells, Cultured , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
16.
Chem Biodivers ; 18(9): e2100397, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302322

ABSTRACT

The red alga Laurencia nipponica comprises various chemical races distributed relative to the ocean current in Japanese coastal areas. We investigated the chemical compositions and chemical races of L. nipponica distributed from the Kunashiri and Etorofu Islands, the confluence of the Soya warm current and Oya-shio cold current. Two new halogenated secondary metabolites, deacetylneonipponallene (1) and neopacifenol (2), along with four known compounds, deoxyprepacifenol (3), pacifenol (4), halo-chamigrene diether (5), and isolaurallene (6) were isolated from L. nipponica collected at Chikappunai, Kunashiri Island, while Zaimokuiwa (Kunashiri Island) and Sana (Etorofu Island) populations contained 3, 7-hydroxylaurene (7), 2,10-dibromo-3-chloro-9-hydroxy-α-chamigrene (8), and (3Z)-laurefucin (9). The structures of 1 and 2 were established using spectroscopic methods. The chemical races of L. nipponica distributed in this area were divided into 6- and 9-producing races. Interestingly, both races contained 4 as an additional race-index, as well as its derivatives, 2 and 5. To the best of our knowledge, this is the first example of a race comprising a mixture of two race-index compounds, suggesting that the convergence of two currents causes the production of new and diverse chemical races in this species.


Subject(s)
Laurencia/chemistry , Sesquiterpenes/chemistry , Halogenation , Islands , Japan , Molecular Conformation , Sesquiterpenes/metabolism
17.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668213

ABSTRACT

Biodegradable periodic mesoporous organosilica (BPMO) has recently emerged as a promising type of mesoporous silica-based nanoparticle for biomedical applications. Like mesoporous silica nanoparticles (MSN), BPMO possesses a large surface area where various compounds can be attached. In this work, we attached boronophenylalanine (10BPA) to the surface and explored the potential of this nanomaterial for delivering boron-10 for use in boron neutron capture therapy (BNCT). This cancer therapy is based on the principle that the exposure of boron-10 to thermal neutron results in the release of a-particles that kill cancer cells. To attach 10BPA, the surface of BPMO was modified with diol groups which facilitated the efficient binding of 10BPA, yielding 10BPA-loaded BPMO (10BPA-BPMO). Surface modification with phosphonate was also carried out to increase the dispersibility of the nanoparticles. To investigate this nanomaterial's potential for BNCT, we first used human cancer cells and found that 10BPA-BPMO nanoparticles were efficiently taken up into the cancer cells and were localized in perinuclear regions. We then used a chicken egg tumor model, a versatile and convenient tumor model used to characterize nanomaterials. After observing significant tumor accumulation, 10BPA-BPMO injected chicken eggs were evaluated by irradiating with neutron beams. Dramatic inhibition of the tumor growth was observed. These results suggest the potential of 10BPA-BPMO as a novel boron agent for BNCT.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Metal Nanoparticles/administration & dosage , Neoplasms/drug therapy , Organosilicon Compounds/chemistry , Phenylalanine/chemistry , Apoptosis , Cell Proliferation , Humans , Metal Nanoparticles/chemistry , Neoplasms/pathology , Tumor Cells, Cultured
18.
Cancer Sci ; 111(7): 2620-2634, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32412154

ABSTRACT

Secondary lymphedema often develops after cancer surgery, and over 250 million patients suffer from this complication. A major symptom of secondary lymphedema is swelling with fibrosis, which lowers the patient's quality of life, even if cancer does not recur. Nonetheless, the pathophysiology of secondary lymphedema remains unclear, with therapeutic approaches limited to physical or surgical therapy. There is no effective pharmacological therapy for secondary lymphedema. Notably, the lack of animal models that accurately mimic human secondary lymphedema has hindered pathophysiological investigations of the disease. Here, we developed a novel rat hindlimb model of secondary lymphedema and showed that our rat model mimics human secondary lymphedema from early to late stages in terms of cell proliferation, lymphatic fluid accumulation, and skin fibrosis. Using our animal model, we investigated the disease progression and found that transforming growth factor-beta 1 (TGFB1) was produced by macrophages in the acute phase and by fibroblasts in the chronic phase of the disease. TGFB1 promoted the transition of fibroblasts into myofibroblasts and accelerated collagen synthesis, resulting in fibrosis, which further indicates that myofibroblasts and TGFB1/Smad signaling play key roles in fibrotic diseases. Furthermore, the presence of myofibroblasts in skin samples from lymphedema patients after cancer surgery emphasizes the role of these cells in promoting fibrosis. Suppression of myofibroblast-dependent TGFB1 production may therefore represent an effective pharmacological treatment for inhibiting skin fibrosis in human secondary lymphedema after cancer surgery.


Subject(s)
Lymphedema/etiology , Lymphedema/metabolism , Postoperative Complications , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Biomarkers , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , Humans , Immunohistochemistry , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphedema/diagnostic imaging , Lymphedema/pathology , Macrophages/metabolism , Macrophages/pathology , Rats , Severity of Illness Index , Skin/metabolism , Skin/pathology , Transforming Growth Factor beta1/genetics
19.
Biochem Biophys Res Commun ; 533(4): 1269-1275, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33059919

ABSTRACT

Sphingomyelin synthase 2 (SMS2) regulates sphingomyelin synthesis and contributes to obesity and hepatic steatosis. Here, we investigated the effect of SMS2 deficiency on liver fibrosis in mice fed with choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) or injected with carbon tetrachloride (CCl4), respectively. SMS2 deficiency suppressed hepatic steatosis, but exacerbated fibrosis induced by CDAHFD feeding. Sphingosine 1-phosphate (S1P), which is a key lipid mediator induces fibrosis in various organs, was increased in the liver of mice fed with CDAHFD. The increase of S1P became prominent by SMS2 deficiency. Meanwhile, SMS2 deficiency had no impact on CCl4-induced liver injury, fibrosis and S1P levels. Our findings demonstrated that SMS2 deficiency suppresses steatosis but worsens fibrosis in the liver in a specific condition with CDAHFD feeding.


Subject(s)
Fatty Liver/etiology , Liver Cirrhosis/etiology , Transferases (Other Substituted Phosphate Groups)/physiology , Amino Acids/administration & dosage , Animals , Chemical and Drug Induced Liver Injury/etiology , Choline/physiology , Diet, High-Fat , Liver/metabolism , Lysophospholipids/metabolism , Mice, Knockout , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics
20.
Mol Pharm ; 17(10): 3740-3747, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32845640

ABSTRACT

Cyclic RGD (cRGD) peptide-conjugated boronated albumin was developed to direct toward integrin αvß3, which overexpresses on many cancer cells. A stepwise conjugation of c[RGDfK(Mal)] and maleimide-conjugated closo-dodecaborate (MID) to bovine serum albumin (BSA) afforded cRGD-MID-BSA, which was noncytotoxic toward both U87MG and A549 cells. As compared with l-BPA, selective antitumor activity of cRGD-MID-BSA toward U87MG cells overexpressing integrin αvß3 was identified after thermal neutron irradiation. In vivo fluorescence live imaging of Cy5-conjugated cRGD-MID-BSA and MID-BSA revealed that both cRGD-MID-BSA and MID-BSA similarly reached the maximum accumulation during 8-12 h after injection. The selective accumulation and retention of Cy5-cRGD-MID-BSA was more pronounced than Cy5-MID-BSA after 24 h. An in vivo boron neutron capture therapy (BNCT) study revealed that the cRGD peptide ligand combination enhanced accumulation of MID-BSA into tumor cells in U87MG xenograft models. The significant tumor growth suppression was observed in U87MG xenograft models at a dose of 7.5 mg [10B]/kg after neutron irradiation.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron/administration & dosage , Drug Carriers/chemistry , Integrin alphaVbeta3/metabolism , Isotopes/administration & dosage , Neoplasms/radiotherapy , Animals , Boron/chemistry , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Cell Line, Tumor , Female , Humans , Integrin alphaVbeta3/immunology , Intravital Microscopy , Isotopes/chemistry , Mice , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/pathology , Peptides, Cyclic/chemistry , Serum Albumin, Bovine/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL