Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Mol Cell ; 84(4): 715-726.e5, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38183984

ABSTRACT

Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.


Subject(s)
Carboxylic Ester Hydrolases , Peptides , Ribosomes , Ribosomes/metabolism , Peptides/genetics , Bacteria/genetics , Quality Control , Protein Biosynthesis
2.
Nat Chem Biol ; 20(7): 867-876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38238495

ABSTRACT

The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Ribosomes/metabolism , Ribosomes/drug effects , Ribosomes/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/metabolism , Methyltransferases/metabolism , Methyltransferases/chemistry , Methyltransferases/antagonists & inhibitors , Methylation , Models, Molecular , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/genetics
3.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Article in English | MEDLINE | ID: mdl-33462493

ABSTRACT

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Subject(s)
Macrolides/metabolism , RNA, Ribosomal/ultrastructure , Ribosomes/ultrastructure , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Macrolides/pharmacology , Methylation , RNA, Ribosomal/genetics , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/ultrastructure , Ribosomes/genetics , Ribosomes/metabolism
4.
Proc Natl Acad Sci U S A ; 117(4): 1971-1975, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31932436

ABSTRACT

While most of the ribosome-targeting antibiotics are bacteriostatic, some members of the macrolide class demonstrate considerable bactericidal activity. We previously showed that an extended alkyl-aryl side chain is the key structural element determining the macrolides' slow dissociation from the ribosome and likely accounts for the antibiotics' cidality. In the nontranslating Escherichia coli ribosome, the extended side chain of macrolides interacts with 23S ribosomal RNA (rRNA) nucleotides A752 and U2609, that were proposed to form a base pair. However, the existence of this base pair in the translating ribosome, its possible functional role, and its impact on the binding and cidality of the antibiotic remain unknown. By engineering E. coli cells carrying individual and compensatory mutations at the 752 and 2609 rRNA positions, we show that integrity of the base pair helps to modulate the ribosomal response to regulatory nascent peptides, determines the slow dissociation rate of the extended macrolides from the ribosome, and increases their bactericidal effect. Our findings demonstrate that the ability of antibiotics to kill bacterial cells relies not only on the chemical nature of the inhibitor, but also on structural features of the target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/growth & development , Macrolides/pharmacology , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/metabolism , Ribosomes/metabolism , Anti-Bacterial Agents/chemistry , Base Pairing , Binding Sites , Escherichia coli/drug effects , Escherichia coli/genetics , Macrolides/chemistry , Nucleic Acid Conformation , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , RNA, Ribosomal, 23S/genetics
5.
RNA ; 25(5): 600-606, 2019 05.
Article in English | MEDLINE | ID: mdl-30733327

ABSTRACT

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.


Subject(s)
Anti-Bacterial Agents/chemistry , Chloramphenicol/chemistry , Erythromycin/chemistry , Ribosome Subunits/drug effects , Thermus thermophilus/drug effects , Anti-Bacterial Agents/pharmacology , Binding Sites , Binding, Competitive , Chloramphenicol/pharmacology , Crystallography, X-Ray , Erythromycin/pharmacology , Escherichia coli/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Peptidyl Transferases/antagonists & inhibitors , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Protein Binding , Protein Biosynthesis , Protein Conformation , Ribosome Subunits/genetics , Ribosome Subunits/metabolism , Ribosome Subunits/ultrastructure , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
6.
Biochemistry (Mosc) ; 86(8): 942-951, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34488571

ABSTRACT

Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.


Subject(s)
Protein Biosynthesis , RNA, Bacterial/chemistry , Ribosomes/chemistry , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Biochemistry , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Nucleic Acid Conformation , Peptides/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 114(52): 13673-13678, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229833

ABSTRACT

Antibiotics can cause dormancy (bacteriostasis) or induce death (cidality) of the targeted bacteria. The bactericidal capacity is one of the most important properties of antibacterial agents. However, the understanding of the fundamental differences in the mode of action of bacteriostatic or bactericidal antibiotics, especially those belonging to the same chemical class, is very rudimentary. Here, by examining the activity and binding properties of chemically distinct macrolide inhibitors of translation, we have identified a key difference in their interaction with the ribosome, which correlates with their ability to cause cell death. While bacteriostatic and bactericidal macrolides bind in the nascent peptide exit tunnel of the large ribosomal subunit with comparable affinities, the bactericidal antibiotics dissociate from the ribosome with significantly slower rates. The sluggish dissociation of bactericidal macrolides correlates with the presence in their structure of an extended alkyl-aryl side chain, which establishes idiosyncratic interactions with the ribosomal RNA. Mutations or chemical alterations of the rRNA nucleotides in the drug binding site can protect cells from macrolide-induced killing, even with inhibitor concentrations that significantly exceed those required for cell growth arrest. We propose that the increased translation downtime due to slow dissociation of the antibiotic may damage cells beyond the point where growth can be reinitiated upon the removal of the drug due to depletion of critical components of the gene-expression pathway.


Subject(s)
Anti-Bacterial Agents/chemistry , Macrolides/chemistry , Ribosomes/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Dose-Response Relationship, Drug , Erythromycin/chemistry , Erythromycin/pharmacology , Kinetics , Macrolides/pharmacology , Models, Molecular , Molecular Conformation , Protein Binding , Protein Biosynthesis/drug effects , Ribosomes/metabolism , Streptococcus pneumoniae/drug effects , Structure-Activity Relationship , Thermodynamics
8.
Nucleic Acids Res ; 45(16): 9573-9582, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28934499

ABSTRACT

Antibiotics methymycin (MTM) and pikromycin (PKM), co-produced by Streptomyces venezuelae, represent minimalist macrolide protein synthesis inhibitors. Unlike other macrolides, which carry several side chains, a single desosamine sugar is attached to the macrolactone ring of MTM and PKM. In addition, the macrolactone scaffold of MTM is smaller than in other macrolides. The unusual structure of MTM and PKM and their simultaneous secretion by S. venezuelae bring about the possibility that two compounds would bind to distinct ribosomal sites. However, by combining genetic, biochemical and crystallographic studies, we demonstrate that MTM and PKM inhibit translation by binding to overlapping sites in the ribosomal exit tunnel. Strikingly, while MTM and PKM readily arrest the growth of bacteria, ∼40% of cellular proteins continue to be synthesized even at saturating concentrations of the drugs. Gel electrophoretic analysis shows that compared to other ribosomal antibiotics, MTM and PKM prevent synthesis of a smaller number of cellular polypeptides illustrating a unique mode of action of these antibiotics.


Subject(s)
Bacterial Proteins/biosynthesis , Escherichia coli/drug effects , Macrolides/pharmacology , Protein Synthesis Inhibitors/pharmacology , Binding, Competitive , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/growth & development , Macrolides/chemistry , Macrolides/metabolism , Peptide Elongation Factor G/genetics , Ribosomes/chemistry , Ribosomes/metabolism
9.
Science ; 383(6684): 721-726, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359125

ABSTRACT

We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.


Subject(s)
Anti-Bacterial Agents , Bridged-Ring Compounds , Drug Resistance, Multiple, Bacterial , Lincosamides , Oxepins , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Erythromycin/chemistry , Erythromycin/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Bridged-Ring Compounds/chemical synthesis , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Oxepins/chemical synthesis , Oxepins/chemistry , Oxepins/pharmacology , Lincosamides/chemical synthesis , Lincosamides/chemistry , Lincosamides/pharmacology , Animals , Mice , Drug Design , Ribosomes/chemistry
10.
Nat Commun ; 14(1): 4196, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452045

ABSTRACT

The ever-growing rise of antibiotic resistance among bacterial pathogens is one of the top healthcare threats today. Although combination antibiotic therapies represent a potential approach to more efficiently combat infections caused by susceptible and drug-resistant bacteria, only a few known drug pairs exhibit synergy/cooperativity in killing bacteria. Here, we discover that well-known ribosomal antibiotics, hygromycin A (HygA) and macrolides, which target peptidyl transferase center and peptide exit tunnel, respectively, can act cooperatively against susceptible and drug-resistant bacteria. Remarkably, HygA slows down macrolide dissociation from the ribosome by 60-fold and enhances the otherwise weak antimicrobial activity of the newest-generation macrolide drugs known as ketolides against macrolide-resistant bacteria. By determining a set of high-resolution X-ray crystal structures of drug-sensitive wild-type and macrolide-resistant Erm-methylated 70S ribosomes in complex with three HygA-macrolide pairs, we provide a structural rationale for the binding cooperativity of these drugs and also uncover the molecular mechanism of overcoming Erm-type resistance by macrolides acting together with hygromycin A. Altogether our structural, biochemical, and microbiological findings lay the foundation for the subsequent development of synergistic antibiotic tandems with improved bactericidal properties against drug-resistant pathogens, including those expressing erm genes.


Subject(s)
Ketolides , Macrolides , Macrolides/pharmacology , Anti-Bacterial Agents/chemistry , Cinnamates/pharmacology , Hygromycin B/pharmacology , Ketolides/pharmacology , Protein Synthesis Inhibitors/pharmacology , Bacteria/metabolism , Drug Resistance, Bacterial/genetics
11.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808676

ABSTRACT

The ribosome is an essential drug target as many classes of clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent mechanisms of resistance to PTC-acting drugs is C8-methylation of the universally conserved adenine residue 2503 (A2503) of the 23S rRNA by the methyltransferase Cfr. Despite its clinical significance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. In this work, we developed a method to express a functionally-active Cfr-methyltransferase in the thermophilic bacterium Thermus thermophilus and report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-tRNAs. Our structures reveal that an allosteric rearrangement of nucleotide A2062 upon Cfr-methylation of A2503 is likely responsible for the inability of some PTC inhibitors to bind to the ribosome, providing additional insights into the Cfr resistance mechanism. Lastly, by determining the structures of the Cfr-methylated ribosome in complex with the antibiotics iboxamycin and tylosin, we provide the structural bases behind two distinct mechanisms of evading Cfr-mediated resistance.

12.
Antimicrob Agents Chemother ; 56(4): 1774-83, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22252829

ABSTRACT

A reporter construct was created on the basis of the transcription attenuator region of the Escherichia coli tryptophan operon. Dual-fluorescent-protein genes for red fluorescent protein and cerulean fluorescent protein were used as a sensor and internal control of gene expression. The sequence of the attenuator was modified to avoid tryptophan sensitivity while preserving sensitivity to ribosome stalling. Antimicrobial compounds which cause translation arrest at the stage of elongation induce the reporter both in liquid culture and on an agar plate. This reporter could be used for high-throughput screening of translation inhibitors.


Subject(s)
High-Throughput Screening Assays/methods , Luminescent Proteins/genetics , Peptide Chain Elongation, Translational/drug effects , Transcription, Genetic/drug effects , Agar , Amino Acid Sequence , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Culture Media , Escherichia coli/metabolism , Fermentation , Gene Expression Regulation, Bacterial/drug effects , Genes, Reporter/genetics , Micromonospora/metabolism , Molecular Sequence Data , Operon , Protein Synthesis Inhibitors/pharmacology , Ribosomes/drug effects , Siphoviridae/genetics , Tryptophan/genetics , Tryptophan/pharmacology , Red Fluorescent Protein
13.
Nat Commun ; 12(1): 2803, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990576

ABSTRACT

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Ribosomes/drug effects , Anti-Bacterial Agents/chemistry , Binding Sites , Cryoelectron Microscopy , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Humans , Macrolides/chemistry , Models, Molecular , Mutation , Protein Binding , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Structure-Activity Relationship
14.
Nat Commun ; 12(1): 4466, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294725

ABSTRACT

Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ketolides/pharmacology , Macrolides/pharmacology , Protein Synthesis Inhibitors/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Binding Sites/genetics , Cryoelectron Microscopy , Drug Resistance, Microbial/genetics , Erythromycin/chemistry , Erythromycin/pharmacology , Genes, Bacterial , Ketolides/chemistry , Ketolides/pharmacokinetics , Macrolides/chemistry , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Dynamics Simulation , Mutagenesis, Insertional , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemistry , Ribosomes/drug effects
15.
Protein Sci ; 15(2): 242-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16385000

ABSTRACT

Molecular chaperones of the Hsp70 family (bacterial DnaK, DnaJ, and GrpE) were shown to be strictly required for refolding of firefly luciferase from a denatured state and thus for effective restoration of its activity. At the same time the luciferase was found to be synthesized in an Escherichia coli cell-free translation system in a highly active state in the extract with no chaperone activity. The addition of the chaperones to the extract during translation did not raise the activity of the enzyme. The abrupt arrest of translation by the addition of a translational inhibitor led to immediate cessation of the enzyme activity accumulation, indicating the cotranslational character of luciferase folding. The results presented suggest that the chaperones of the Hsp70 family are not required for effective cotranslational folding of firefly luciferase.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Luciferases, Firefly/chemistry , Protein Folding , Cell-Free System , Escherichia coli/metabolism , Luciferases, Firefly/genetics , Molecular Chaperones/chemistry , Protein Biosynthesis , Protein Modification, Translational
SELECTION OF CITATIONS
SEARCH DETAIL