Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33328309

ABSTRACT

Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins; however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing small interfering RNA (siRNA)-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release, suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that indirect interference with ULK1 through inhibition of the upstream regulator AMP-activated protein kinase (AMPK) impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99), and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure the efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Cytomegalovirus/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Viral Proteins/metabolism , Virus Release , AMP-Activated Protein Kinases/antagonists & inhibitors , Autophagy/genetics , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Capsid/metabolism , Cells, Cultured , Cytoplasm/metabolism , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Phosphorylation , Up-Regulation , Viral Matrix Proteins/metabolism , Virus Replication
2.
PLoS Pathog ; 16(4): e1008426, 2020 04.
Article in English | MEDLINE | ID: mdl-32282833

ABSTRACT

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/ß/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.


Subject(s)
Cytomegalovirus Infections/enzymology , Cytomegalovirus/metabolism , Granzymes/metabolism , Immediate-Early Proteins/metabolism , Killer Cells, Natural/enzymology , Trans-Activators/metabolism , Amino Acid Motifs , Cytomegalovirus/genetics , Cytomegalovirus Infections/virology , Granzymes/genetics , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/genetics , Proteolysis , T-Lymphocytes, Cytotoxic/enzymology , Trans-Activators/genetics
3.
J Virol ; 93(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30814291

ABSTRACT

Chromatin-based modifications of herpesviral genomes play a crucial role in dictating the outcome of infection. Consistent with this, host cell multiprotein complexes, such as polycomb repressive complexes (PRCs), were proposed to act as epigenetic regulators of herpesviral latency. In particular, PRC2 has recently been shown to contribute to the silencing of human cytomegalovirus (HCMV) genomes. Here, we identify a novel proviral role of PRC1 and PRC2, the two main polycomb repressive complexes, during productive HCMV infection. Western blot analyses revealed strong HCMV-mediated upregulation of RING finger protein 1B (RING1B) and B lymphoma Moloney murine leukemia virus insertion region 1 homolog (BMI1) as well as of enhancer of zeste homolog 2 (EZH2), suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED), which constitute the core components of PRC1 and PRC2, respectively. Furthermore, we observed a relocalization of PRC components to viral replication compartments, whereas histone modifications conferred by the respective PRCs were specifically excluded from these sites. Depletion of individual PRC1/PRC2 proteins by RNA interference resulted in a significant reduction of newly synthesized viral genomes and, in consequence, a decreased release of viral particles. Furthermore, accelerated native isolation of protein on nascent DNA (aniPOND) revealed a physical association of EZH2 and BMI1 with nascent HCMV DNA, suggesting a direct contribution of PRC proteins to viral DNA replication. Strikingly, substances solely inhibiting the enzymatic activity of PRC1/2 did not exert antiviral effects, while drugs affecting the abundance of PRC core components strongly compromised HCMV genome synthesis and particle release. Taken together, our data reveal an enzymatically independent, noncanonical function of both PRC1 and PRC2 during HCMV DNA replication, which may serve as a novel cellular target for antiviral therapy.IMPORTANCE Polycomb group (PcG) proteins are primarily known as transcriptional repressors that modify chromatin and contribute to the establishment and maintenance of cell fates. Furthermore, emerging evidence indicates that overexpression of PcG proteins in various types of cancers contributes to the dysregulation of cellular proliferation. Consequently, several inhibitors targeting PcG proteins are presently undergoing preclinical and clinical evaluation. Here, we show that infection with human cytomegalovirus also induces a strong upregulation of several PcG proteins. Our data suggest that viral DNA replication depends on a noncanonical function of polycomb repressor complexes which is independent of the so-far-described enzymatic activities of individual PcG factors. Importantly, we observe that a subclass of inhibitory drugs that affect the abundance of PcG proteins strongly interferes with viral replication. This principle may serve as a novel promising target for antiviral treatment.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , DNA Replication , DNA, Viral/biosynthesis , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism , Virus Replication , Cells, Cultured , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/therapy , DNA, Viral/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Neoplasm Proteins , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Transcription Factors
4.
J Gen Virol ; 98(10): 2569-2581, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28949903

ABSTRACT

Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cytomegalovirus/metabolism , Protein Kinase C-alpha/metabolism , Viral Proteins/metabolism , Virus Release/physiology , Active Transport, Cell Nucleus , CDC2 Protein Kinase , Cell Nucleus/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Humans , Mass Spectrometry , Phosphorylation , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/genetics
5.
Viruses ; 13(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499341

ABSTRACT

Nuclear egress is a common herpesviral process regulating nucleocytoplasmic capsid release. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that regulates multicomponent assembly with NEC-associated proteins and capsids. Recently, NEC crystal structures were resolved for α-, ß- and γ-herpesviruses, revealing profound structural conservation, which was not mirrored, however, by primary sequence and binding properties. The NEC binding principle is based on hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. So far, pUL50 has been considered as the major kinase-interacting determinant and massive phosphorylation of pUL50-pUL53 was assigned to NEC formation and functionality. Here, we addressed the question of phenotypical changes of ORF-UL50-mutated HCMVs. Surprisingly, our analyses did not detect a predominant replication defect for most of these viral mutants, concerning parameters of replication kinetics (qPCR), viral protein production (Western blot/CoIP) and capsid egress (confocal imaging/EM). Specifically, only the ORF-UL50 deletion rescue virus showed a block of genome synthesis during late stages of infection, whereas all phosphosite mutants exhibited marginal differences compared to wild-type or revertants. These results (i) emphasize a rate-limiting function of pUL50 for nuclear egress, and (ii) demonstrate that mutations in all mapped pUL50 phosphosites may be largely compensated. A refined mechanistic concept points to a multifaceted nuclear egress regulation, for which the dependence on the expression and phosphorylation of pUL50 is discussed.


Subject(s)
Cytomegalovirus/genetics , Cytomegalovirus/physiology , Viral Proteins/genetics , Capsid/metabolism , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Mutation , Nuclear Envelope/metabolism , Phosphorylation , Virus Release , Virus Replication
6.
Antiviral Res ; 174: 104677, 2020 02.
Article in English | MEDLINE | ID: mdl-31836420

ABSTRACT

Wedelolactone (WDL) is a coumestan present in the plants Eclipta prostrata and Wedelia calendulacea which are used for treatment of a multitude of health problems in traditional medicine. It has previously been shown that WDL exerts antiviral activity against human immunodeficiency virus and hepatitis C virus. In this study, we investigated the effect of WDL on lytic human cytomegalovirus (HCMV) infection. We demonstrate a strong interference with HCMV replication as analyzed in multi-round replication settings. A more detailed analysis of the underlying mechanisms revealed that WDL acts at two distinct steps of the viral replication cycle. During immediate early (IE) times, we observe an inhibition of IE1/IE2 expression. Although WDL was reported to interfere with NF-κB signaling our results suggest the existence of additional mechanisms that impede viral IE expression. During later time points of infection, WDL induced a disruption of the interaction between EZH2 and EED, components of the virus-supportive polycomb repressive complex 2 (PRC2). Thereby, the stability of the PRC2 complex as well as the related complex PRC1 was disturbed leading to diminished viral DNA synthesis. Taken together, we identify WDL as a potent agent against HCMV which interferes at two distinct steps of viral replication.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Cytomegalovirus/drug effects , Virus Replication/drug effects , Cell Line , Cytomegalovirus Infections/virology , Drug Discovery , Fibroblasts/virology , Foreskin/cytology , Humans , Male , Viral Proteins/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL