Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mol Ecol ; 32(13): 3557-3574, 2023 07.
Article in English | MEDLINE | ID: mdl-37052375

ABSTRACT

Optimized nutrient utilization is crucial for the progression of microorganisms in competing communities. Here we investigate how different budding yeast species and ecological isolates have established divergent preferences for two alternative sugar substrates: Glucose, which is fermented preferentially by yeast, and galactose, which is alternatively used upon induction of the relevant GAL metabolic genes. We quantified the dose-dependent induction of the GAL1 gene encoding the central galactokinase enzyme and found that a very large diversification exists between different yeast ecotypes and species. The sensitivity of GAL1 induction correlates with the growth performance of the respective yeasts with the alternative sugar. We further define some of the mechanisms, which have established different glucose/galactose consumption strategies in representative yeast strains by modulating the activity of the Gal3 inducer. (1) Optimal galactose consumers, such as Saccharomyces uvarum, contain a hyperactive GAL3 promoter, sustaining highly sensitive GAL1 expression, which is not further improved upon repetitive galactose encounters. (2) Desensitized galactose consumers, such as S. cerevisiae Y12, contain a less sensitive Gal3 sensor, causing a shift of the galactose response towards higher sugar concentrations even in galactose experienced cells. (3) Galactose insensitive sugar consumers, such as S. cerevisiae DBVPG6044, contain an interrupted GAL3 gene, causing extremely reluctant galactose consumption, which is, however, improved upon repeated galactose availability. In summary, different yeast strains and natural isolates have evolved galactose utilization strategies, which cover the whole range of possible sensitivities by modulating the expression and/or activity of the inducible galactose sensor Gal3.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Sugars/metabolism , Galactose/genetics , Galactose/metabolism , Genes, Fungal , Glucose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Appl Microbiol Biotechnol ; 103(5): 2067-2077, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30659332

ABSTRACT

Stress tolerance and resistance in industrial yeast strains are important attributes for cost-effective bioprocessing. The source of stress-tolerant yeasts ranges from extremophilic environments to laboratory engineered strains. However, industrial stress-tolerant yeasts are very rare in nature as the natural environment forces them to evolve traits that optimize survival and reproduction and not the ability to withstand harsh habitat-irrelevant industrial conditions. Experimental evolution is a frequent method used to uncover the mechanisms of evolution and microbial adaption towards environmental stresses. It optimizes biological systems by means of adaptation to environmental stresses and thus has immense power of development of robust stress-tolerant yeasts. This mini-review briefly outlines the basics and implications of evolution experiments and their applications to industrial biotechnology. This work is meant to serve as an introduction to those new to the field of experimental evolution, and as a guide to biologists working in the field of yeast stress response. Future perspectives of experimental evolution for potential biotechnological applications have also been elucidated.


Subject(s)
Adaptation, Physiological/physiology , Saccharomyces cerevisiae/physiology , Stress, Physiological/physiology , Industrial Microbiology , Saccharomyces cerevisiae/genetics
3.
PLoS Genet ; 12(11): e1006409, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27812096

ABSTRACT

Polyploidization has crucial impacts on the evolution of different eukaryotic lineages including fungi, plants and animals. Recent genome data suggest that, for many polyploidization events, all duplicated chromosomes are maintained and genome reorganizations occur much later during evolution. However, newly-formed polyploid genomes are intrinsically unstable and often quickly degenerate into aneuploidy or diploidy. The transition between these two states remains enigmatic. In this study, laboratory evolution experiments were conducted to investigate this phenomenon. We show that robust tetraploidy is achieved in evolved yeast cells by increasing the abundance of Sch9-a protein kinase activated by the TORC1 (Target of Rapamycin Complex 1) and other signaling pathways. Overexpressing SCH9, but not TOR1, allows newly-formed tetraploids to exhibit evolved phenotypes and knocking out SCH9 diminishes the evolved phenotypes. Furthermore, when cells were challenged with conditions causing ancestral cells to evolve aneuploidy, tetraploidy was maintained in the evolved lines. Our results reveal a determinant role for Sch9 during the early stage of polyploid evolution.


Subject(s)
Multiprotein Complexes/genetics , Polyploidy , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , TOR Serine-Threonine Kinases/genetics , Aneuploidy , Diploidy , Directed Molecular Evolution , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/biosynthesis , Protein Serine-Threonine Kinases/biosynthesis , Saccharomyces cerevisiae Proteins/biosynthesis , Signal Transduction/genetics , TOR Serine-Threonine Kinases/biosynthesis , Tetraploidy
4.
FEMS Yeast Res ; 17(6)2017 09 01.
Article in English | MEDLINE | ID: mdl-28910985

ABSTRACT

Large-scale chromosomal rearrangements are an important source of evolutionary novelty that may have reshaped the genomes of existing yeast species. They dramatically alter genome organization and gene expression fueling a phenotypic leap in response to environmental constraints. Although the emergence of such signatures of genetic diversity is thought to be associated with human exploitation of yeasts, less is known about the driving forces operating in natural habitats. Here we hypothesize that an ecological battlefield characteristic of every autumn when fruits ripen accounts for the genomic innovations in natural populations. We described a long-term cross-kingdom competition experiment between Lachancea kluyveri and five species of bacteria. Now, we report how we further subjected the same yeast to a sixth species of bacteria, Pseudomonas fluorescens, resulting in the appearance of a fixed and stably inherited large-scale genomic rearrangement in two out of three parallel evolution lines. The 'extra-banded' karyotype, characterized by a higher fitness and an elevated fermentative capacity, conferred the emergence of new metabolic traits in most carbon sources and osmolytes. We tracked down the event to a duplication and translocation event involving a 261-kb segment. Such an experimental setup described here is an attractive method for developing industrial strains without genetic engineering strategies.


Subject(s)
Gene Rearrangement , Genome, Fungal , Metabolic Networks and Pathways/genetics , Microbial Interactions , Pseudomonas fluorescens/physiology , Saccharomycetales/genetics , Saccharomycetales/physiology , Fermentation , Genetic Fitness , Karyotype , Segmental Duplications, Genomic , Translocation, Genetic
5.
Acta Neuropathol ; 132(5): 721-738, 2016 11.
Article in English | MEDLINE | ID: mdl-27518042

ABSTRACT

For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.


Subject(s)
DNA-Binding Proteins/genetics , Fragile X Mental Retardation Protein/genetics , Protein Biosynthesis/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , DNA-Binding Proteins/metabolism , Fragile X Mental Retardation Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice , Microtubule-Associated Proteins/genetics , Models, Biological , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Signal Transduction/physiology , Time Factors , Transfection , rac1 GTP-Binding Protein/genetics
6.
BMC Evol Biol ; 15: 163, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26282127

ABSTRACT

BACKGROUND: The introduction of foreign DNA by Lateral Gene Transfer (LGT) can quickly and drastically alter genome composition. Problems can arise if the genes introduced by LGT use codons that are not suited to the host's translational machinery. Here we investigate compensatory adaptation of E. coli in response to the introduction of large volumes of codons that are rarely used by the host genome. RESULTS: We analyze genome sequences from the E. coli/Shigella complex, and find that certain tRNA genes are present in multiple copies in two pathogenic Shigella and O157:H7 subgroups of E. coli. Furthermore, we show that the codons that correspond to these multi-copy number tRNA genes are enriched in the high copy number Selfish Genetic Elements (SGE's) in Shigella and laterally introduced genes in O157:H7. We analyze the duplicate copies and find evidence for the selective retention of tRNA genes introduced by LGT in response to the changed codon content of the genome. CONCLUSION: These data support a model where the relatively rapid influx of LGT genes and SGE's introduces a large number of genes maladapted to the host's translational machinery. Under these conditions, it becomes advantageous for the host to retain tRNA genes that are required for the incorporation of amino acids at these codons. Subsequently, the increased number of copies of these specific tRNA genes adjusts the cellular tRNA pool to the demands set by global shifts in codon usage.


Subject(s)
Codon , Escherichia coli/genetics , Gene Transfer, Horizontal , RNA, Transfer/genetics , Amino Acids/genetics , Biological Evolution , Escherichia coli O157/genetics , Gene Dosage , Protein Biosynthesis , Shigella/classification , Shigella/genetics
7.
BMC Genomics ; 15: 521, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24965678

ABSTRACT

BACKGROUND: Recent studies have demonstrated that antisense transcription is pervasive in budding yeasts and is conserved between Saccharomyces cerevisiae and S. paradoxus. While studies have examined antisense transcripts of S. cerevisiae for inverse expression in stationary phase and stress conditions, there is a lack of comprehensive analysis of the conditional specific evolutionary characteristics of antisense transcription between yeasts. Here we attempt to decipher the evolutionary relationship of antisense transcription of S. cerevisiae and S. paradoxus cultured in mid log, early stationary phase, and heat shock conditions. RESULTS: Massively parallel sequencing of sequence strand-specific cDNA library was performed from RNA isolated from S. cerevisiae and S. paradoxus cells at mid log, stationary phase and heat shock conditions. We performed this analysis using a stringent set of sense ORF transcripts and non-coding antisense transcripts that were expressed in all the three conditions, as well as in both species. We found the divergence of the condition-specific anti-sense transcription levels is higher than that in condition-specific sense transcription levels, suggesting that antisense transcription played a potential role in adapting to different conditions. Furthermore, 43% of sense-antisense pairs demonstrated inverse expression in either stationary phase or heat shock conditions relative to the mid log conditions. In addition, a large part of sense-antisense pairs (67%), which demonstrated inverse expression, were highly conserved between the two species. Our results were also concordant with known functional analyses from previous studies and with the evidence from mechanistic experiments of role of individual genes. CONCLUSIONS: By performing a genome-scale computational analysis, we have tried to evaluate the role of antisense transcription in mediating sense transcription under different environmental conditions across and in two related yeast species. Our findings suggest that antisense regulation could control expression of the corresponding sense transcript via inverse expression under a range of different circumstances.


Subject(s)
Gene Expression Regulation, Fungal , RNA, Antisense , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Transcription, Genetic , Cluster Analysis , Gene Expression Profiling
8.
Biomark Res ; 11(1): 64, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316916

ABSTRACT

BACKGROUND: Late diagnosis is one of the major confounders in oral squamous cell carcinoma (OSCC). Despite recent advances in molecular diagnostics, no disease-specific biomarkers are clinically available for early risk prediction of OSCC. Therefore, it is important to identify robust biomarkers that are detectable using non-invasive liquid biopsy techniques to facilitate the early diagnosis of oral cancer. This study identified potential salivary exosome-derived miRNA biomarkers and crucial miRNA-mRNA networks/underlying mechanisms responsible for OSCC progression. METHODS: Small RNASeq (n = 23) was performed in order to identify potential miRNA biomarkers in both tissue and salivary exosomes derived from OSCC patients. Further, integrated analysis of The Cancer Genome Atlas (TCGA) datasets (n = 114), qPCR validation on larger patient cohorts (n = 70) and statistical analysis with various clinicopathological parameters was conducted to assess the effectiveness of the identified miRNA signature. miRNA-mRNA networks and pathway analysis was conducted by integrating the transcriptome sequencing and TCGA data. The OECM-1 cell line was transfected with the identified miRNA signature in order to observe its effect on various functional mechanisms such as cell proliferation, cell cycle, apoptosis, invasive as well as migratory potential and the downstream signaling pathways regulated by these miRNA-mRNA networks. RESULTS: Small RNASeq and TCGA data identified 12 differentially expressed miRNAs in OSCC patients compared to controls. On validating these findings in a larger cohort of patients, miR-140-5p, miR-143-5p, and miR-145-5p were found to be significantly downregulated. This 3-miRNA signature demonstrated higher efficacy in predicting disease progression and clinically correlated with poor prognosis (p < 0.05). Transcriptome, TCGA, and miRNA-mRNA network analysis identified HIF1a, CDH1, CD44, EGFR, and CCND1 as hub genes regulated by the miRNA signature. Further, transfection-mediated upregulation of the 3-miRNA signature significantly decreased cell proliferation, induced apoptosis, resulted in G2/M phase cell cycle arrest and reduced the invasive and migratory potential by reversing the EMT process in the OECM-1 cell line. CONCLUSIONS: Thus, this study identifies a 3-miRNA signature that can be utilized as a potential biomarker for predicting disease progression of OSCC and uncovers the underlying mechanisms responsible for converting a normal epithelial cell into a malignant phenotype.

9.
Nat Commun ; 13(1): 4394, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906261

ABSTRACT

Dobzhansky-Muller incompatibilities represent a major driver of reproductive isolation between species. They are caused when interacting components encoded by alleles from different species cannot function properly when mixed. At incipient stages of speciation, complex incompatibilities involving multiple genetic loci with weak effects are frequently observed, but the underlying mechanisms remain elusive. Here we show perturbed proteostasis leading to compromised mitosis and meiosis in Saccharomyces cerevisiae hybrid lines carrying one or two chromosomes from Saccharomyces bayanus var. uvarum. Levels of proteotoxicity are correlated with the number of protein complexes on replaced chromosomes. Proteomic approaches reveal that multi-protein complexes with subunits encoded by replaced chromosomes tend to be unstable. Furthermore, hybrid defects can be alleviated or aggravated, respectively, by up- or down-regulating the ubiquitin-proteasomal degradation machinery, suggesting that destabilized complex subunits overburden the proteostasis machinery and compromise hybrid fitness. Our findings reveal the general role of impaired protein complex assembly in complex incompatibilities.


Subject(s)
Saccharomyces cerevisiae , Saccharomyces , Genetic Speciation , Hybridization, Genetic , Proteomics , Saccharomyces/genetics , Saccharomyces cerevisiae/genetics
10.
BMC Evol Biol ; 11: 150, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21627806

ABSTRACT

BACKGROUND: Divergence of transcription factor binding sites is considered to be an important source of regulatory evolution. The associations between transcription factor binding sites and phenotypic diversity have been investigated in many model organisms. However, the understanding of other factors that contribute to it is still limited. Recent studies have elucidated the effect of chromatin structure on molecular evolution of genomic DNA. Though the profound impact of nucleosome positions on gene regulation has been reported, their influence on transcriptional evolution is still less explored. With the availability of genome-wide nucleosome map in yeast species, it is thus desirable to investigate their impact on transcription factor binding site evolution. Here, we present a comprehensive analysis of the role of nucleosome positioning in the evolution of transcription factor binding sites. RESULTS: We compared the transcription factor binding site frequency in nucleosome occupied regions and nucleosome depleted regions in promoters of old (orthologs among Saccharomycetaceae) and young (Saccharomyces specific) genes; and in duplicate gene pairs. We demonstrated that nucleosome occupied regions accommodate greater binding site variations than nucleosome depleted regions in young genes and in duplicate genes. This finding was confirmed by measuring the difference in evolutionary rates of binding sites in sensu stricto yeasts at nucleosome occupied regions and nucleosome depleted regions. The binding sites at nucleosome occupied regions exhibited a consistently higher evolution rate than those at nucleosome depleted regions, corroborating the difference in the selection constraints at the two regions. Finally, through site-directed mutagenesis experiment, we found that binding site gain or loss events at nucleosome depleted regions may cause more expression differences than those in nucleosome occupied regions. CONCLUSIONS: Our study indicates the existence of different selection constraint on binding sites at nucleosome occupied regions than at the nucleosome depleted regions. We found that the binding sites have a different rate of evolution at nucleosome occupied and depleted regions. Finally, using transcription factor binding site-directed mutagenesis experiment, we confirmed the difference in the impact of binding site changes on expression at these regions. Thus, our work demonstrates the importance of composite analysis of chromatin and transcriptional evolution.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Binding Sites , Evolution, Molecular , Gene Expression Regulation, Fungal , Genes, Fungal , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
11.
Nucleic Acids Res ; 37(21): 6991-7001, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19767613

ABSTRACT

Transcription factors (TFs) regulate gene expression by binding to specific binding sites (TFBSs) in gene promoters. TFBS motifs may contain one or more variable positions. Although the prevailing assumption is that nucleotide variants at such positions are functionally equivalent, there is increasing evidence that such variants play a role in regulation of gene expression. In this article, we propose a method for studying the relationship between the expression of target genes and nucleotide variants in TFBS motifs at a genome-wide scale in Saccharomyces cerevisiae, especially the combinatorial effects of variants at two positions. Our analysis shows that nucleotide variations in more than one-third of variable positions and in 20% of dependent position pairs are highly correlated to gene expression. We define such positions as 'functional'. However, some positions are only functional as dependent pairs, but not individually. In addition, a significant proportion of the functional positions have been well conserved across all yeast-related species studied. We also find that some positions require the presence of co-occurring TFs, while others maintain their functionality in the absence of a co-occurring TF. Our analysis supports the importance of nucleotide variants at variable positions of TFBSs in gene regulation.


Subject(s)
Gene Expression Regulation , Genetic Variation , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , DNA/chemistry , Gene Expression Profiling , Promoter Regions, Genetic , Saccharomyces cerevisiae/metabolism , Transcription Factors/chemistry
12.
Front Genet ; 12: 609766, 2021.
Article in English | MEDLINE | ID: mdl-33633780

ABSTRACT

Proteins are the workhorses of the cell and execute many of their functions by interacting with other proteins forming protein complexes. Multi-protein complexes are an admixture of subunits, change their interaction partners, and modulate their functions and cellular physiology in response to environmental changes. When two species mate, the hybrid offspring are usually inviable or sterile because of large-scale differences in the genetic makeup between the two parents causing incompatible genetic interactions. Such reciprocal-sign epistasis between inter-specific alleles is not limited to incompatible interactions between just one gene pair; and, usually involves multiple genes. Many of these multi-locus incompatibilities show visible defects, only in the presence of all the interactions, making it hard to characterize. Understanding the dynamics of protein-protein interactions (PPIs) leading to multi-protein complexes is better suited to characterize multi-locus incompatibilities, compared to studying them with traditional approaches of genetics and molecular biology. The advances in omics technologies, which includes genomics, transcriptomics, and proteomics can help achieve this end. This is especially relevant when studying non-model organisms. Here, we discuss the recent progress in the understanding of hybrid genetic incompatibility; omics technologies, and how together they have helped in characterizing protein complexes and in turn multi-locus incompatibilities. We also review advances in bioinformatic techniques suitable for this purpose and propose directions for leveraging the knowledge gained from model-organisms to identify genetic incompatibilities in non-model organisms.

14.
PLoS One ; 12(3): e0173318, 2017.
Article in English | MEDLINE | ID: mdl-28282411

ABSTRACT

The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait.


Subject(s)
Bacteria/growth & development , Evolution, Molecular , Saccharomycetales/growth & development , Aerobiosis , Batch Cell Culture Techniques , Coculture Techniques , Ethanol/metabolism , Glycolysis , INDEL Mutation , Polymorphism, Single Nucleotide , RNA, Fungal/chemistry , RNA, Fungal/isolation & purification , RNA, Fungal/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Sequence Analysis, RNA , Transcriptome
15.
Article in English | MEDLINE | ID: mdl-27468311

ABSTRACT

BACKGROUND: Genome-wide studies in higher eukaryotes have revealed the presence of paused RNA polymerase II (RNA-Pol) at about 30-50 bp downstream of the transcription start site of genes involved in developmental control, cell proliferation and intercellular signaling. Promoter-proximal pausing is believed to represent a critical step in transcriptional regulation. GAGA sequence motifs have frequently been found in the upstream region of paused genes in Drosophila, implicating a prevalent binding factor, GAF, in transcriptional pausing. RESULTS: Using newly isolated mutants that retain only ~3 % normal GAF level, we analyzed its impacts on transcriptional regulation in whole animals. We first examined the abundance of three major isoforms of RNA-Pol on Hsp70 during heat shock. By cytogenetic analyses on polytene chromosomes and chromatin immunoprecipitation (ChIP), we show that paused RNA-Pol of Hsp70 is substantially reduced in mutants. Conversely, a global increase in paused RNA-Pol is observed when GAF is over-expressed. Coupled analyses of transcriptome and GAF genomic distribution show that 269 genes enriched for upstream GAF binding are down-regulated in mutants. Interestingly, ~15 % of them encode transcriptional factors, which might control ~2000 additional genes down-regulated in mutants. Further examination of RNA-Pol distribution in GAF targets reveals that a positive correlation exists between promoter-proximal RNA-Pol density and GAF occupancy in WT, but not in mutants. Comparison of nucleosome profiles indicates that nucleosome occupancy is preferentially attenuated by GAF in the upstream region that strongly favors nucleosome assembly. Using a dominant eye phenotype caused by GAF over-expression, we detect significant genetic interactions between GAF and the nucleosome remodeler NURF, the pausing factor NELF, and BAB1 whose binding sites are enriched specifically in genes displaying GAF-dependent pausing. CONCLUSION: Our results provide direct evidence to support a critical role of GAF in global gene expression, transcriptional pausing and upstream nucleosome organization of a group of genes. By cooperating with factors acting at different levels, GAF orchestrates a series of events from local nucleosome displacement to paused transcription. The use of whole animals containing broad tissue types attests the physiological relevance of this regulatory network.

16.
Genome Biol Evol ; 6(10): 2851-65, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25316598

ABSTRACT

Hsp90 is one of the most abundant and conserved proteins in the cell. Reduced levels or activity of Hsp90 causes defects in many cellular processes and also reveals genetic and nongenetic variation within a population. Despite information about Hsp90 protein-protein interactions, a global view of the Hsp90-regulated proteome in yeast is unavailable. To investigate the degree of dependency of individual yeast proteins on Hsp90, we used the "stable isotope labeling by amino acids in cell culture" method coupled with mass spectrometry to quantify around 4,000 proteins in low-Hsp90 cells. We observed that 904 proteins changed in their abundance by more than 1.5-fold. When compared with the transcriptome of the same population of cells, two-thirds of the misregulated proteins were observed to be affected posttranscriptionally, of which the majority were downregulated. Further analyses indicated that the downregulated proteins are highly conserved and assume central roles in cellular networks with a high number of protein interacting partners, suggesting that Hsp90 buffers genetic and nongenetic variation through regulating protein network hubs. The downregulated proteins were enriched for essential proteins previously not known to be Hsp90-dependent. Finally, we observed that downregulation of transcription factors and mating pathway components by attenuating Hsp90 function led to decreased target gene expression and pheromone response, respectively, providing a direct link between observed proteome regulation and cellular phenotypes.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Animals , Genomics/methods , HSP90 Heat-Shock Proteins/genetics , Humans , Protein Binding , Proteomics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
17.
Gene ; 491(2): 237-45, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-21963994

ABSTRACT

It is generally accepted that genes are regulated by the interactions between transcription factors (TFs) and their binding sites (TFBSs). Some studies have demonstrated that nucleotide variants at variable positions in TFBSs affect yeast gene regulation. Furthermore, variable positions in TFBSs in association with distinct accompanying regulatory motifs of other TFs (i.e., co-TFs) can also impact gene regulation in eukaryotes. Given that, even low-affinity TF-DNA interactions are abundant in vivo; we used both low- and high-affinity TFBSs and performed a genome-wide analysis of associations between variable positions and co-TFs. We found that, in Saccharomyces cerevisiae, approximately 14% of the variable positions in TFBSs demonstrate such associations. These associations occurred in close proximity on the same promoters (i.e., highly co-localized). Moreover, such associations were highly conserved between sensu stricto yeasts and also influenced gene expression, which were consistent with enriched functional categories.


Subject(s)
Binding Sites/genetics , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Amino Acid Motifs , Genetic Variation , Genome-Wide Association Study
SELECTION OF CITATIONS
SEARCH DETAIL