Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Genome Res ; 32(1): 150-161, 2022 01.
Article in English | MEDLINE | ID: mdl-34261731

ABSTRACT

Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for >10 yr. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators to better understand epigenetic regulation in cancer and precision medicine.


Subject(s)
Chromatin , Formaldehyde , Chromatin/genetics , Epigenesis, Genetic , Gene Expression Profiling/methods , Humans , Paraffin Embedding/methods , Tissue Fixation/methods
2.
Chemistry ; 29(51): e202300864, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37332083

ABSTRACT

The study of a fluorescent indolin-3-one derivative is reported that, as opposed to its previously described congeners, selectively undergoes photoactivated ring-opening in apolar solvents. The excited state involved in this photoisomerization was partially deactivated by the formation of singlet oxygen. Cell studies revealed lipid droplet accumulation and efficient light-induced cytotoxicity.


Subject(s)
Singlet Oxygen , Solvents
3.
Proc Natl Acad Sci U S A ; 117(33): 20127-20138, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747535

ABSTRACT

Medulloblastoma is the most common malignant brain tumor in children. Here we describe a medulloblastoma model using Induced pluripotent stem (iPS) cell-derived human neuroepithelial stem (NES) cells generated from a Gorlin syndrome patient carrying a germline mutation in the sonic hedgehog (SHH) receptor PTCH1. We found that Gorlin NES cells formed tumors in mouse cerebellum mimicking human medulloblastoma. Retransplantation of tumor-isolated NES (tNES) cells resulted in accelerated tumor formation, cells with reduced growth factor dependency, enhanced neurosphere formation in vitro, and increased sensitivity to Vismodegib. Using our model, we identified LGALS1 to be a GLI target gene that is up-regulated in both Gorlin tNES cells and SHH-subgroup of medulloblastoma patients. Taken together, we demonstrate that NES cells derived from Gorlin patients can be used as a resource to model medulloblastoma initiation and progression and to identify putative targets.


Subject(s)
Hedgehog Proteins/metabolism , Medulloblastoma/genetics , Neural Stem Cells/physiology , Anilides/pharmacology , Animals , Basal Cell Nevus Syndrome/genetics , Basal Cell Nevus Syndrome/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Galectin 1/genetics , Galectin 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/genetics , Humans , Mice , Neoplasms, Experimental , Patched-1 Receptor/genetics , Pyridines/pharmacology
4.
EMBO J ; 35(20): 2192-2212, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27625374

ABSTRACT

SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation-resistant SOX9 mutant reveals activation of pro-metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7-dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.


Subject(s)
Cell Cycle Proteins/metabolism , F-Box Proteins/metabolism , Medulloblastoma/metabolism , SOX9 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Aniline Compounds/pharmacology , Animals , Benzamides , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement , Chromones/pharmacology , Cisplatin/pharmacology , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Mice, Nude , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Pyrroles/pharmacology , SOX9 Transcription Factor/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
5.
Bioinformatics ; 35(18): 3357-3364, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30715209

ABSTRACT

MOTIVATION: Medulloblastoma (MB) is a brain cancer predominantly arising in children. Roughly 70% of patients are cured today, but survivors often suffer from severe sequelae. MB has been extensively studied by molecular profiling, but often in small and scattered cohorts. To improve cure rates and reduce treatment side effects, accurate integration of such data to increase analytical power will be important, if not essential. RESULTS: We have integrated 23 transcription datasets, spanning 1350 MB and 291 normal brain samples. To remove batch effects, we combined the Removal of Unwanted Variation (RUV) method with a novel pipeline for determining empirical negative control genes and a panel of metrics to evaluate normalization performance. The documented approach enabled the removal of a majority of batch effects, producing a large-scale, integrative dataset of MB and cerebellar expression data. The proposed strategy will be broadly applicable for accurate integration of data and incorporation of normal reference samples for studies of various diseases. We hope that the integrated dataset will improve current research in the field of MB by allowing more large-scale gene expression analyses. AVAILABILITY AND IMPLEMENTATION: The RUV-normalized expression data is available through the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and can be accessed via the GSE series number GSE124814. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Gene Expression , Gene Expression Profiling , Humans
6.
J Pathol ; 247(2): 228-240, 2019 02.
Article in English | MEDLINE | ID: mdl-30357839

ABSTRACT

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor which lacks efficient treatment and predictive biomarkers. Expression of the epithelial stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been described in GBM, but its functional role has not been conclusively elucidated. Here, we have investigated the role of LGR5 in a large repository of patient-derived GBM stem cell (GSC) cultures. The consequences of LGR5 overexpression or depletion have been analyzed using in vitro and in vivo methods, which showed that, among those with highest LGR5 expression (LGR5high ), there were two phenotypically distinct groups: one that was dependent on LGR5 for its malignant properties and another that was unaffected by changes in LGR5 expression. The LGR5-responding cultures could be identified by their significantly higher self-renewal capacity as measured by extreme limiting dilution assay (ELDA), and these LGR5high -ELDAhigh cultures were also significantly more malignant and invasive compared to the LGR5high -ELDAlow cultures. This showed that LGR5 expression alone would not be a strict marker of LGR5 responsiveness. In a search for additional biomarkers, we identified LPAR4, CCND2, and OLIG2 that were significantly upregulated in LGR5-responsive GSC cultures, and we found that OLIG2 together with LGR5 were predictive of GSC radiation and drug response. Overall, we show that LGR5 regulates the malignant phenotype in a subset of patient-derived GSC cultures, which supports its potential as a predictive GBM biomarker. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Brain Neoplasms/metabolism , Cell Movement , Cell Proliferation , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Self Renewal , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Phenotype , Radiation Tolerance , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Tumor Cells, Cultured
7.
Brain ; 141(5): 1300-1319, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29490009

ABSTRACT

Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-ß signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-ß activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-ß/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.10.1093/brain/awy039_video1awy039media15742053534001.


Subject(s)
Carrier Proteins/metabolism , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/physiology , Medulloblastoma/metabolism , Neoplasm Metastasis/physiopathology , PTEN Phosphohydrolase/metabolism , Adolescent , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Infant , Male , Medulloblastoma/pathology , Mice , Mice, Inbred BALB C , Models, Molecular , Neoplasm Metastasis/genetics , PTEN Phosphohydrolase/genetics , Phosphoric Monoester Hydrolases , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
8.
PLoS Genet ; 12(5): e1006000, 2016 05.
Article in English | MEDLINE | ID: mdl-27171399

ABSTRACT

Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10-8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Dog Diseases/genetics , Eukaryotic Initiation Factors/genetics , Glioma/genetics , Receptors, Purinergic P2X7/genetics , Animals , Dogs , Genetic Association Studies , Genome , Genome-Wide Association Study , Genotype , Glioma/pathology , Humans , Polymorphism, Single Nucleotide
9.
Genes Dev ; 24(10): 1059-72, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20478998

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Sonic Hedgehog (SHH) signaling drives a minority of MB, correlating with desmoplastic pathology and favorable outcome. The majority, however, arises independently of SHH and displays classic or large cell anaplastic (LCA) pathology and poor prognosis. To identify common signaling abnormalities, we profiled mRNA, demonstrating misexpression of MYCN in the majority of human MB and negligible expression in normal cerebella. We clarified a role in pathogenesis by targeting MYCN (and luciferase) to cerebella of transgenic mice. MYCN-driven MB showed either classic or LCA pathologies, with Shh signaling activated in approximately 5% of tumors, demonstrating that MYCN can drive MB independently of Shh. MB arose at high penetrance, consistent with a role for MYCN in initiation. Tumor burden correlated with bioluminescence, with rare metastatic spread to the leptomeninges, suggesting roles for MYCN in both progression and metastasis. Transient pharmacological down-regulation of MYCN led to both clearance and senescence of tumor cells, and improved survival. Targeted expression of MYCN thus contributes to initiation, progression, and maintenance of MB, suggesting a central role for MYCN in pathogenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Medulloblastoma/physiopathology , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/metabolism , Animals , Cell Cycle/physiology , Cellular Senescence/physiology , Cerebellum/metabolism , Down-Regulation , Gene Expression Profiling , Genomic Instability , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/pathology , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neoplasm Metastasis/pathology , Nuclear Proteins/genetics , Oncogene Proteins/genetics
10.
Acta Neuropathol ; 134(5): 679-689, 2017 11.
Article in English | MEDLINE | ID: mdl-28725965

ABSTRACT

Medulloblastoma is the most frequent malignant brain tumor in childhood, but it may also affect infants, adolescents, and young adults. Recent advances in the understanding of the disease have shed light on molecular and clinical heterogeneity, which is now reflected in the updated WHO classification of brain tumors. At the same time, it is well accepted that preclinical research and clinical trials have to be subgroup-specific. Hence, valid models have to be generated specifically for every medulloblastoma subgroup to properly mimic molecular fingerprints, clinical features, and responsiveness to targeted therapies. This review summarizes the availability of experimental medulloblastoma models with a particular focus on how well these models reflect the actual disease subgroup. We further describe technical advantages and disadvantages of the models and finally point out how some models have successfully been used to introduce new drugs and why some medulloblastoma subgroups are extraordinary difficult to model.


Subject(s)
Brain Neoplasms/pathology , Medulloblastoma/pathology , Animals , Brain Neoplasms/metabolism , Disease Models, Animal , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
11.
Cell Tissue Res ; 359(1): 225-54, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25416506

ABSTRACT

Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.


Subject(s)
Brain Neoplasms/pathology , Cell Differentiation , Animals , Brain Neoplasms/genetics , Carcinogenesis/pathology , Cell Proliferation , Epigenesis, Genetic , Humans , Neurogenesis
12.
Cancer Metastasis Rev ; 32(1-2): 5-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23085857

ABSTRACT

Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.


Subject(s)
Brain Neoplasms/pathology , Animals , Brain Neoplasms/diagnosis , Brain Neoplasms/etiology , Disease Models, Animal , Humans , Mice
13.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730706

ABSTRACT

Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.

14.
Cell Death Dis ; 14(10): 676, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833290

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death in the world. In most cases, drug resistance and tumor recurrence are ultimately inevitable. One obstacle is the presence of chemotherapy-insensitive quiescent cancer cells (QCCs). Identification of unique features of QCCs may facilitate the development of new targeted therapeutic strategies to eliminate tumor cells and thereby delay tumor recurrence. Here, using single-cell RNA sequencing, we classified proliferating and quiescent cancer cell populations in the human colorectal cancer spheroid model and identified ATF3 as a novel signature of QCCs that could support cells living in a metabolically restricted microenvironment. RNA velocity further showed a shift from the QCC group to the PCC group indicating the regenerative capacity of the QCCs. Our further results of epigenetic analysis, STING analysis, and evaluation of TCGA COAD datasets build a conclusion that ATF3 can interact with DDIT4 and TRIB3 at the transcriptional level. In addition, decreasing the expression level of ATF3 could enhance the efficacy of 5-FU on CRC MCTS models. In conclusion, ATF3 was identified as a novel marker of QCCs, and combining conventional drugs targeting PCCs with an option to target QCCs by reducing ATF3 expression levels may be a promising strategy for more efficient removal of tumor cells.


Subject(s)
Colorectal Neoplasms , Neoplasm Recurrence, Local , Humans , Neoplasm Recurrence, Local/genetics , Cell Line, Tumor , Colorectal Neoplasms/pathology , Promoter Regions, Genetic , Tumor Microenvironment , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism
15.
Neuro Oncol ; 25(1): 97-107, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35738865

ABSTRACT

BACKGROUND: Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS: Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS: A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS: Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.


Subject(s)
Brain Neoplasms , Glioma , Animals , Humans , Mice , Brain Neoplasms/pathology , Genetic Association Studies , Glioma/pathology , Oncogenes , Proto-Oncogene Proteins c-sis/genetics
16.
Nat Commun ; 14(1): 1221, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869047

ABSTRACT

Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Glioma , Medulloblastoma , Proto-Oncogene Proteins c-myc , Animals , Child , Humans , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein
17.
BMC Cancer ; 12: 378, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22931209

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. METHODS: We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student's t-test. RESULTS: We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling. CONCLUSIONS: Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Developmental , Glioma/genetics , MicroRNAs/genetics , SOXB1 Transcription Factors/metabolism , Animals , Animals, Newborn , Apoptosis/genetics , Becaplermin , Blotting, Northern , Blotting, Western , Brain/embryology , Brain/growth & development , Cell Line, Transformed , Cell Line, Tumor , Chickens , Glioma/metabolism , Glioma/pathology , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , RNA Interference , Signal Transduction/genetics , Transplantation, Heterologous
18.
RSC Adv ; 12(23): 14544-14550, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702197

ABSTRACT

In this work, a series of fluorescent 2,1,3-benzothiadiazole derivatives with various N-substituents in the 4-position was synthesized and photophysically characterized in various solvents. Three compounds emerged as excellent fluorescent probes for imaging lipid droplets in cancer cells. A correlation between their high lipophilicity and lipid droplet specificity could be found, with log P ≥ 4 being characteristic for lipid droplet accumulation.

19.
Cancers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35805002

ABSTRACT

Neuroblastoma, the most common solid tumor in children, is characterized by amplification of the MYCN proto-oncogene, a high-risk aggressive clinical marker associated with treatment failure. MYCN plays an important role in cell growth, proliferation, metabolism, and chemoresistance. Here, we show for the first time that in neuroblastoma, iron chelator VLX600 inhibits mitochondrial respiration, decreases expression levels of MYCN/LMO1, and induces an efficient cell death regardless of MYCN status in both 2D and 3D culture conditions. Moreover, insufficient induction of autophagy was observed in cells treated with VLX600, which is essential as a protective response in the event of ATP synthesis disruption. Further inhibition of glucose uptake using DRB18, a pan-GLUT (glucose transporter) inhibitor, synergized the effect of VLX600 and no significant cell death was found in immortalized epithelial cells under this combination treatment. Our results demonstrate that inhibition of mitochondrial respiration by iron chelator VLX600 accompanied by autophagy deficiency promotes sensitivity of neuroblastoma cells in a nutrition-restricted microenvironment regardless of MYCN status, indicating that MYCN expression level is an essential clinical marker but might not be a necessary target for the treatment of neuroblastoma which warrants further investigation. VLX600 has been studied in Phase I clinical trials; combining VLX600 with conventional chemotherapy could be an innovative therapeutic strategy for neuroblastoma.

20.
Cell Rep ; 39(5): 110779, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508126

ABSTRACT

Basal cell carcinomas (BCCs) frequently possess immense mutational burdens; however, the functional significance of most of these mutations remains unclear. Here, we report that loss of Ptch1, the most common mutation that activates upstream Hedgehog (Hh) signaling, initiates the formation of nascent BCC-like tumors that eventually enter into a dormant state. However, rare tumors that overcome dormancy acquire the ability to hyperactivate downstream Hh signaling through a variety of mechanisms, including amplification of Gli1/2 and upregulation of Mycn. Furthermore, we demonstrate that MYCN overexpression promotes the progression of tumors induced by loss of Ptch1. These findings suggest that canonical mutations that activate upstream Hh signaling are necessary, but not sufficient, for BCC to fully progress. Rather, tumors likely acquire secondary mutations that further hyperactivate downstream Hh signaling in order to escape dormancy and enter a trajectory of uncontrolled expansion.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Hedgehog Proteins/genetics , Humans , Mutation/genetics , N-Myc Proto-Oncogene Protein/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Zinc Finger Protein GLI1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL