Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Publication year range
1.
Nat Chem Biol ; 20(1): 30-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37400538

ABSTRACT

Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.


Subject(s)
Phosphoric Diester Hydrolases , Single-Domain Antibodies , Phosphoric Diester Hydrolases/metabolism , Phosphoric Monoester Hydrolases , Cryoelectron Microscopy
2.
Mol Cell Proteomics ; 21(7): 100247, 2022 07.
Article in English | MEDLINE | ID: mdl-35594991

ABSTRACT

Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.


Subject(s)
COVID-19 , Interferon-beta , Oncogenes , Proteomics , Animals , Antiviral Restriction Factors , COVID-19/immunology , Carcinogenesis , Cell Line, Tumor , Humans , Interferon-beta/immunology , Proto-Oncogene Proteins p21(ras)/genetics , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 117(25): 14110-14118, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32522868

ABSTRACT

Interleukin-6 (IL-6) family cytokines signal through multimeric receptor complexes, providing unique opportunities to create novel ligand-based therapeutics. The cardiotrophin-like cytokine factor 1 (CLCF1) ligand has been shown to play a role in cancer, osteoporosis, and atherosclerosis. Once bound to ciliary neurotrophic factor receptor (CNTFR), CLCF1 mediates interactions to coreceptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). By increasing CNTFR-mediated binding to these coreceptors we generated a receptor superagonist which surpassed the potency of natural CNTFR ligands in neuronal signaling. Through additional mutations, we generated a receptor antagonist with increased binding to CNTFR but lack of binding to the coreceptors that inhibited tumor progression in murine xenograft models of nonsmall cell lung cancer. These studies further validate the CLCF1-CNTFR signaling axis as a therapeutic target and highlight an approach of engineering cytokine activity through a small number of mutations.


Subject(s)
Ciliary Neurotrophic Factor Receptor alpha Subunit/agonists , Cytokines/metabolism , Protein Engineering/methods , Animals , Binding Sites , Cell Line, Tumor , Cells, Cultured , Ciliary Neurotrophic Factor Receptor alpha Subunit/antagonists & inhibitors , Ciliary Neurotrophic Factor Receptor alpha Subunit/metabolism , Cytokine Receptor gp130/metabolism , Cytokines/chemistry , Cytokines/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Ligands , Neurons/metabolism , Protein Binding , Rats , Signal Transduction
4.
Salud Publica Mex ; 64(1): 100-104, 2022 Feb 25.
Article in Spanish | MEDLINE | ID: mdl-35438915

ABSTRACT

In 2014, a partnership was established between the Univer-sity of California and Mexico, which subsequently catalyzed formation of collaborations between cancer researchers at University of California, San Francisco and in Mexico. Over the past two decades cancer burden has dramatically increased in Mexicans on both sides of the California - Mexico border. Together, we face a growing burden of cancer in the context of globalized economies, diverse migration patterns, and dynamic immigration policies. Our partnership aims to: (1) understand the life course impact of cancer risk factors and interactions with changing environments; (2) address cancer disparities within Mexico, in Mexican migrants to the United States, and in naturalized Mexican-Americans; and (3) identify effective cancer screening strategies and cancer control policies that are tailored to existing healthcare systems and social and cultural factors. Herein, we describe the principles of partner-ship and early successes and challenges of this collaboration.


Subject(s)
Neoplasms , Transients and Migrants , Delivery of Health Care , Emigration and Immigration , Humans , Mexican Americans , Mexico/epidemiology , Neoplasms/epidemiology , United States
5.
PLoS Comput Biol ; 16(4): e1007753, 2020 04.
Article in English | MEDLINE | ID: mdl-32275708

ABSTRACT

Precision oncology has primarily relied on coding mutations as biomarkers of response to therapies. While transcriptome analysis can provide valuable information, incorporation into workflows has been difficult. For example, the relative rather than absolute gene expression level needs to be considered, requiring differential expression analysis across samples. However, expression programs related to the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific expression changes. To address these challenges, we developed an unsupervised clustering approach for discovering differential pathway expression within cancer cohorts using gene expression measurements. The hydra approach uses a Dirichlet process mixture model to automatically detect multimodally distributed genes and expression signatures without the need for matched normal tissue. We demonstrate that the hydra approach is more sensitive than widely-used gene set enrichment approaches for detecting multimodal expression signatures. Application of the hydra analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signatures associated with changes in the tumor microenvironment. The hydra approach also identified an association between ATRX deletions and elevated immune marker expression in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes, characterized by changes to infiltrating immune and stromal expression signatures.


Subject(s)
Gene Expression Profiling/methods , Neoplasms/genetics , Transcriptome/genetics , Biomarkers, Tumor , Child , Cluster Analysis , Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Models, Statistical , Neuroblastoma/genetics , Precision Medicine/methods , Tumor Microenvironment/genetics
6.
J Pediatr Hematol Oncol ; 43(6): e808-e811, 2021 08 01.
Article in English | MEDLINE | ID: mdl-32815876

ABSTRACT

Overlapping myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal hematopoietic disorders with features of myelodysplasia and myeloproliferation. The only well-characterized MDS/MPN in children is juvenile myelomonocytic leukemia, an aggressive disorder of infants and toddlers. The biochemical hallmark of this disease is hyperactivation of the Ras/MAPK signaling pathway caused by mutations in Ras pathway genes in more than 90% of patients. Translocations involving receptor tyrosine kinases have been identified in rare cases. Here, we report a 2-year-old patient who presented with MDS/MPN driven by a cytogenetically cryptic NUP98-NSD1 fusion, a translocation thought to exclusively occur in patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myelomonocytic, Juvenile/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics , Oncogene Proteins, Fusion/genetics , Child, Preschool , Cytogenetics , Female , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Myelodysplastic-Myeloproliferative Diseases/diagnosis , Translocation, Genetic
7.
Mol Cell ; 50(2): 157-8, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622513

ABSTRACT

In this issue of Molecular Cell, Reid et al. (2013) show that glutamine withdrawal causes PP2A-mediated activation of p53 through its regulator EDD, linking levels of a critical metabolite to an important regulator of cell survival and proliferation.

8.
Adv Exp Med Biol ; 1258: 1-19, 2020.
Article in English | MEDLINE | ID: mdl-32767231

ABSTRACT

Osteosarcoma is a genomically complex disease characterized by few recurrent single-nucleotide mutations or in-frame fusions. In contrast, structural alterations, including copy number changes, chromothripsis, kataegis, loss of heterozygosity (LOH), and other large-scale genomic alterations, are frequent and widespread across the osteosarcoma genome. These observed structural alterations lead to activation of oncogenes and loss of tumor suppressors which together contribute to oncogenesis. To date, few targeted therapies for osteosarcoma have been identified. It is likely that effectiveness of targeted therapies will vary greatly in subsets of tumors with distinct key driver events. Model systems which can recapitulate the genetic heterogeneity of this disease are needed to test this hypothesis. One possible approach is to use patient-derived xenograft (PDX) models characterized with regards to their similarity to the human tumor samples from which they were derived. Here we review evidence pointing to the genomic complexity of osteosarcoma and how this is reflected in available model systems. We also review the current state of preclinical testing for targeted therapies using these models.


Subject(s)
Bone Neoplasms/genetics , Genome, Human/genetics , Genomics , Osteosarcoma/genetics , Chromothripsis , Humans
9.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31355930

ABSTRACT

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Subject(s)
Epigenomics , Genomics , Osteosarcoma/therapy , Translational Research, Biomedical , Child , Humans , Mutation/genetics , Osteosarcoma/epidemiology , Osteosarcoma/genetics , Osteosarcoma/pathology , Proteomics , Tumor Suppressor Protein p53/genetics
10.
Nucleic Acids Res ; 45(13): e126, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28541529

ABSTRACT

Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors.


Subject(s)
Algorithms , Gene Fusion , Biomarkers, Tumor/genetics , Cell Line, Tumor , Computer Simulation , Databases, Nucleic Acid , Female , Fusion Proteins, bcr-abl/genetics , Genes, abl , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Oncogene Fusion , Oncogene Proteins, Fusion/genetics , Ovarian Neoplasms/genetics , Sequence Alignment , Sequence Analysis, RNA
11.
Genes Dev ; 24(8): 837-52, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20395368

ABSTRACT

Chemotherapy resistance is a major obstacle in cancer treatment, yet the mechanisms of response to specific therapies have been largely unexplored in vivo. Employing genetic, genomic, and imaging approaches, we examined the dynamics of response to a mainstay chemotherapeutic, cisplatin, in multiple mouse models of human non-small-cell lung cancer (NSCLC). We show that lung tumors initially respond to cisplatin by sensing DNA damage, undergoing cell cycle arrest, and inducing apoptosis-leading to a significant reduction in tumor burden. Importantly, we demonstrate that this response does not depend on the tumor suppressor p53 or its transcriptional target, p21. Prolonged cisplatin treatment promotes the emergence of resistant tumors with enhanced repair capacity that are cross-resistant to platinum analogs, exhibit advanced histopathology, and possess an increased frequency of genomic alterations. Cisplatin-resistant tumors express elevated levels of multiple DNA damage repair and cell cycle arrest-related genes, including p53-inducible protein with a death domain (Pidd). We demonstrate a novel role for PIDD as a regulator of chemotherapy response in human lung tumor cells.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Repair/drug effects , Lung Neoplasms/drug therapy , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/metabolism , Cell Line, Tumor , Death Domain Receptor Signaling Adaptor Proteins , Disease Models, Animal , Drug Resistance, Neoplasm/physiology , Gene Expression Profiling , Humans , Lung Neoplasms/pathology , Mice , Oligonucleotide Array Sequence Analysis
12.
Pediatr Blood Cancer ; 64(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28423236

ABSTRACT

BACKGROUND: Treatment refusal and abandonment are major causes of treatment failure for children with cancer in low- and middle-income countries (LMICs), like Guatemala. This study identified risk factors for and described the intervention that decreased abandonment. METHODS: This was a retrospective study of Guatemalan children (0-18 years) with cancer treated at the Unidad Nacional de Oncología Pediátrica (UNOP), 2001-2008, using the Pediatric Oncology Network Database. Treatment refusal was a failure to begin treatment and treatment abandonment was a lapse of 4 weeks or longer in treatment. The impact of medicina integral, a multidisciplinary psychosocial intervention team at UNOP was evaluated. Cox proportional hazards analysis identified the effect of demographic and clinical factors on abandonment. Kaplan-Meier analysis estimated the survival. RESULTS: Of 1,789 patients, 21% refused or abandoned treatment. Abandonment decreased from 27% in 2001 to 7% in 2008 following the implementation of medicina integral. Factors associated with increased risk of refusal and abandonment: greater distance to the centre (P < 0.001), younger age (P = 0.017) and earlier year of diagnosis (P < 0.001). Indigenous race/ethnicity (P = 0.002) was associated with increased risk of abandonment alone. Abandonment correlated with decreased overall survival: 0.57 ± 0.02 (survival ± standard error) for those who completed therapy versus 0.06 ± 0.02 for those who abandoned treatment (P < 0.001) at 8.3 years. CONCLUSION: This study identified distance, age, year of diagnosis and indigenous race/ethnicity as risk factors for abandonment. A multidisciplinary intervention reduced abandonment and can be replicated in other LMICs.


Subject(s)
Neoplasms/mortality , Neoplasms/therapy , Refusal to Treat , Adolescent , Aftercare , Child , Child, Preschool , Disease-Free Survival , Female , Guatemala/epidemiology , Humans , Infant , Male , Retrospective Studies , Survival Rate
13.
Article in English | MEDLINE | ID: mdl-38565264

ABSTRACT

In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.

14.
Clin Cancer Res ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078310

ABSTRACT

PURPOSE: Effective therapies for metastatic osteosarcoma (OS) remain a critical unmet need. Targeting mRNA translation in metastatic OS offers a promising option, as selective translation drives synthesis of cytoprotective proteins under harsh microenvironmental conditions to facilitate metastatic competence. EXPERIMENTAL DESIGN: We assessed expression levels of eukaryotic translation factors in OS, revealing high expression of the eIF4A1 initiation factor. Using a panel of metastatic OS cell lines and PDX models, eIF4A1 inhibitors were evaluated for their ability to block proliferation and reduce survival under oxidative stress, mimicking harsh conditions of the lung microenvironment. Inhibitors were also evaluated for their anti-metastatic activity using the ex vivo pulmonary metastasis assay (PuMA) and in vivo metastasis models. Proteomics were performed to catalog which cytoprotective proteins or pathways were affected by eIF4A1 inhibition. RESULTS: CR-1-31B, a rocaglate-based eIF4A1 inhibitor, exhibited nanomolar cytotoxicity against all metastatic OS models tested. CR-1-31B exacerbated oxidative stress and apoptosis when OS cells were co-treated with a tert-butylhydroquinone (tBHQ), a chemical oxidative stress inducer. CR-1-31B potently inhibited OS growth in the PuMA model and in experimental and spontaneous models of OS lung metastasis. Proteomic analysis revealed that tBHQ-mediated upregulation of the NRF2 antioxidant factor was blocked by co-treatment with CR-1-31B. Genetic inactivation of NRF2 phenocopied the anti-metastatic activity of CR-1-31B. Finally, the clinical grade eIF4A1 phase 1-2 inhibitor, Zotatifin, similarly blocked NRF2 synthesis and the OS metastatic phenotype. CONCLUSIONS: Collectively, our data reveal that pharmacologic targeting of eIF4A1 is highly effective in blocking OS metastasis by blunting the NRF2 antioxidant response.

15.
Clin Cancer Res ; 30(4): 849-864, 2024 02 16.
Article in English | MEDLINE | ID: mdl-37703185

ABSTRACT

PURPOSE: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN: Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS: PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS: The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.


Subject(s)
Bone Neoplasms , Cyclic N-Oxides , Indolizines , Osteosarcoma , Pyridinium Compounds , Humans , Animals , Mice , Disease Models, Animal , Drug Evaluation, Preclinical , Xenograft Model Antitumor Assays , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Cell Line, Tumor , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism
16.
Nat Commun ; 14(1): 3966, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407562

ABSTRACT

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Subject(s)
Adenocarcinoma of Lung , CCAAT-Enhancer-Binding Proteins , Lung Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , DNA Methylation , Epigenesis, Genetic , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Res Sq ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398210

ABSTRACT

The genetic principle of synthetic lethality is clinically validated in cancers with loss of specific DNA damage response (DDR) pathway genes (i.e. BRCA1/2 tumor suppressor mutations). The broader question of whether and how oncogenes create tumor-specific vulnerabilities within DDR networks remains unanswered. Native FET protein family members are among the earliest proteins recruited to DNA double-strand breaks (DSBs) during the DDR, though the function of both native FET proteins and FET fusion oncoproteins in DSB repair remains poorly defined. Here we focus on Ewing sarcoma (ES), an EWS-FLI1 fusion oncoprotein-driven pediatric bone tumor, as a model for FET rearranged cancers. We discover that the EWS-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native EWS function in activating the DNA damage sensor ATM. Using preclinical mechanistic approaches and clinical datasets, we establish functional ATM deficiency as a principal DNA repair defect in ES and the compensatory ATR signaling axis as a collateral dependency and therapeutic target in FET rearranged cancers. Thus, aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt normal DSB repair, revealing a mechanism for how oncogenes can create cancer-specific synthetic lethality within DDR networks.

18.
bioRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37205599

ABSTRACT

While oncogenes promote cancer cell growth, unrestrained proliferation represents a significant stressor to cellular homeostasis networks such as the DNA damage response (DDR). To enable oncogene tolerance, many cancers disable tumor suppressive DDR signaling through genetic loss of DDR pathways and downstream effectors (e.g., ATM or p53 tumor suppressor mutations). Whether and how oncogenes can help "self-tolerize" by creating analogous functional deficiencies in physiologic DDR networks is not known. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWS-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET protein family members are among the earliest factors recruited to DNA double-strand breaks (DSBs) during the DDR, though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. Using preclinical mechanistic studies of the DDR and clinical genomic datasets from patient tumors, we discover that the EWS-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native FET (EWS) protein function in activating the DNA damage sensor ATM. As a consequence of FET fusion-mediated interference with the DDR, we establish functional ATM deficiency as the principal DNA repair defect in Ewing sarcoma and the compensatory ATR signaling axis as a collateral dependency and therapeutic target in multiple FET rearranged cancers. More generally, we find that aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt physiologic DSB repair, revealing a mechanism for how growth-promoting oncogenes can also create a functional deficiency within tumor suppressive DDR networks.

19.
Cancer Rep (Hoboken) ; 6(12): e1901, 2023 12.
Article in English | MEDLINE | ID: mdl-37933765

ABSTRACT

BACKGROUND: The development of tyrosine kinase inhibitors (TKIs) has significantly improved survival rates among patients with Philadelphia chromosome (Ph+) B cell acute lymphoblastic leukemia (B-ALL). Ph-like B-ALL patients lack the BCR::ABL1 translocation but share gene expression profiles with Ph+ B-ALL. The role of TKIs for Ph-like patients pre- and post-hematopoietic stem cell transplantation (HSCT) is not yet clear. CASE: Here we present five cases of pediatric, adolescent, and young adult patients who presented with Ph-like B-ALL or CML in B-ALL blast phase who were treated with personalized TKI regimens pre- and post-HSCT. CONCLUSION: This report describes several novel Ph-like fusions as well as combinations of TKIs with chemotherapy or immunotherapy not yet reported in the pediatric population. This case series provides real-world experience highlighting the potential application of pre- and post-HSCT use of TKIs in a subset of patients with targetable fusions.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Adolescent , Young Adult , Protein Kinase Inhibitors/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Philadelphia Chromosome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Hematopoietic Stem Cell Transplantation/adverse effects
20.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711882

ABSTRACT

Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes. We describe the development and characterization of osteosarcoma patient-derived xenografts (PDXs) and a panel of PDX-derived cell lines. Matched patient samples, PDXs, and PDX-derived cell lines were comprehensively evaluated using whole genome sequencing and RNA sequencing. PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication (WGD) in a subset of cell lines. These cell line models were heterogeneous in their metastatic capacity and their tissue tropism as observed in both intravenous and orthotopic models. As proof-of-concept study, we used one of these models to test the preclinical effectiveness of a CDK inhibitor on the growth of metastatic tumors in an orthotopic amputation model. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden in this model.

SELECTION OF CITATIONS
SEARCH DETAIL