Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell ; 144(1): 27-40, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21215367

ABSTRACT

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Neoplasms/pathology , Bone Neoplasms/genetics , Cell Line, Tumor , Chromosome Painting , Female , Gene Rearrangement , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Middle Aged
2.
Nat Methods ; 14(9): 865-868, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759029

ABSTRACT

High-throughput single-cell RNA sequencing has transformed our understanding of complex cell populations, but it does not provide phenotypic information such as cell-surface protein levels. Here, we describe cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), a method in which oligonucleotide-labeled antibodies are used to integrate cellular protein and transcriptome measurements into an efficient, single-cell readout. CITE-seq is compatible with existing single-cell sequencing approaches and scales readily with throughput increases.


Subject(s)
Epitope Mapping/methods , Epitopes/immunology , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Tissue Array Analysis/methods , Transcriptome/physiology
3.
Nucleic Acids Res ; 46(21): 11370-11380, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30357357

ABSTRACT

Immediate-early response genes (IEGs) are rapidly and transiently induced following an extracellular signal. Elucidating the IEG response patterns in single cells (SCs) requires assaying large numbers of timed samples at high accuracy while minimizing handling effects. To achieve this, we developed and validated RNA stabilization Buffer for Examination of Single-cell Transcriptomes (RNA-Best), a versatile single-step cell and tissue preservation protocol that stabilizes RNA in intact SCs without perturbing transcription patterns. We characterize for the first time SC heterogeneity in IEG responses to pulsatile gonadotropin-releasing hormone (GnRH) stimuli in pituitary gonadotrope cells. Our study identifies a gene-specific hierarchical pattern of all-or-none transcript induction elicited by increasing concentrations of GnRH. This quantal pattern of gene activation raises the possibility that IEG activation, when accurately resolved at the SC level, may be mediated by gene bits that behave as pure binary switches.


Subject(s)
Early Growth Response Protein 1/genetics , Early Growth Response Protein 2/genetics , Gonadotrophs/drug effects , Gonadotropin-Releasing Hormone/pharmacology , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/genetics , Animals , Buffers , Cell Line, Tumor , Dose-Response Relationship, Drug , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 2/metabolism , Genes, Immediate-Early , Genetic Heterogeneity , Gonadotrophs/cytology , Gonadotrophs/metabolism , Mice , Proto-Oncogene Proteins c-fos/metabolism , RNA Stability , RNA, Messenger/metabolism , Sequence Analysis, RNA , Single-Cell Analysis/standards , Transcriptional Activation/drug effects , Transcriptome
4.
Nat Methods ; 12(6): 519-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915121

ABSTRACT

The simultaneous sequencing of a single cell's genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


Subject(s)
DNA/genetics , Genomics/methods , Nucleic Acid Amplification Techniques/methods , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Humans , Mice
5.
Am J Hum Genet ; 92(2): 301-6, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23352258

ABSTRACT

A single Mendelian trait has been mapped to the human Y chromosome: Y-linked hearing impairment. The molecular basis of this disorder is unknown. Here, we report the detailed characterization of the DFNY1 Y chromosome and its comparison with a closely related Y chromosome from an unaffected branch of the family. The DFNY1 chromosome carries a complex rearrangement, including duplication of several noncontiguous segments of the Y chromosome and insertion of ∼160 kb of DNA from chromosome 1, in the pericentric region of Yp. This segment of chromosome 1 is derived entirely from within a known hearing impairment locus, DFNA49. We suggest that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.


Subject(s)
Chromosomes, Human, Y/genetics , Genes, Y-Linked/genetics , Hearing Loss/genetics , Female , Gene Rearrangement/genetics , Humans , Male , Pedigree
6.
Nature ; 467(7319): 1109-13, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20981101

ABSTRACT

Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.


Subject(s)
Genomic Instability/genetics , Mutagenesis/genetics , Neoplasm Metastasis/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Cycle/genetics , Cell Lineage/genetics , Clone Cells/metabolism , Clone Cells/pathology , DNA Mutational Analysis , Disease Progression , Evolution, Molecular , Genes, Neoplasm/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Neoplasm Metastasis/pathology , Organ Specificity , Telomere/genetics , Telomere/pathology
7.
Nature ; 462(7276): 1005-10, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20033038

ABSTRACT

Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.


Subject(s)
Breast Neoplasms/genetics , Chromosome Aberrations , Gene Rearrangement/genetics , Genome, Human/genetics , Cell Line, Tumor , Cells, Cultured , DNA Breaks , Female , Genomic Library , Humans , Sequence Analysis, DNA
8.
BMC Genomics ; 15: 110, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24507442

ABSTRACT

BACKGROUND: A minor but significant fraction of samples subjected to next-generation sequencing methods are either mixed-up or cross-contaminated. These events can lead to false or inconclusive results. We have therefore developed SASI-Seq; a process whereby a set of uniquely barcoded DNA fragments are added to samples destined for sequencing. From the final sequencing data, one can verify that all the reads derive from the original sample(s) and not from contaminants or other samples. RESULTS: By adding a mixture of three uniquely barcoded amplicons, of different sizes spanning the range of insert sizes one would normally use for Illumina sequencing, at a spike-in level of approximately 0.1%, we demonstrate that these fragments remain intimately associated with the sample. They can be detected following even the tightest size selection regimes or exome enrichment and can report the occurrence of sample mix-ups and cross-contamination.As a consequence of this work, we have designed a set of 384 eleven-base Illumina barcode sequences that are at least 5 changes apart from each other, allowing for single-error correction and very low levels of barcode misallocation due to sequencing error. CONCLUSION: SASI-Seq is a simple, inexpensive and flexible tool that enables sample assurance, allows deconvolution of sample mix-ups and reports levels of cross-contamination between samples throughout NGS workflows.


Subject(s)
Sequence Analysis, DNA/methods , DNA/chemistry , DNA/metabolism , DNA Contamination , Gene Library , High-Throughput Nucleotide Sequencing , Humans
9.
Nature ; 456(7218): 53-9, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18987734

ABSTRACT

DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.


Subject(s)
Genome, Human/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Chromosomes, Human, X/genetics , Consensus Sequence/genetics , Genomics/economics , Genotype , Humans , Male , Nigeria , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity , Sequence Analysis, DNA/economics
10.
J Clin Microbiol ; 51(3): 745-51, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23224084

ABSTRACT

The cost of whole-genome sequencing (WGS) is decreasing rapidly as next-generation sequencing technology continues to advance, and the prospect of making WGS available for public health applications is becoming a reality. So far, a number of studies have demonstrated the use of WGS as an epidemiological tool for typing and controlling outbreaks of microbial pathogens. Success of these applications is hugely dependent on efficient generation of clean genetic material that is free from host DNA contamination for rapid preparation of sequencing libraries. The presence of large amounts of host DNA severely affects the efficiency of characterizing pathogens using WGS and is therefore a serious impediment to clinical and epidemiological sequencing for health care and public health applications. We have developed a simple enzymatic treatment method that takes advantage of the methylation of human DNA to selectively deplete host contamination from clinical samples prior to sequencing. Using malaria clinical samples with over 80% human host DNA contamination, we show that the enzymatic treatment enriches Plasmodium falciparum DNA up to ∼9-fold and generates high-quality, nonbiased sequence reads covering >98% of 86,158 catalogued typeable single-nucleotide polymorphism loci.


Subject(s)
DNA Contamination , DNA, Protozoan/isolation & purification , Malaria, Falciparum/parasitology , Molecular Biology/methods , Parasitology/methods , Plasmodium falciparum/genetics , DNA Methylation , DNA, Protozoan/genetics , Humans , Hydrolysis , Molecular Epidemiology/methods , Plasmodium falciparum/isolation & purification
11.
BMC Genomics ; 13: 341, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22827831

ABSTRACT

BACKGROUND: Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. RESULTS: Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. CONCLUSIONS: All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.


Subject(s)
Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Base Composition/genetics , Base Sequence , Bordetella pertussis/genetics , Databases, Genetic , Gene Library , Genome, Bacterial/genetics , Genome, Protozoan/genetics , Nucleotide Motifs/genetics , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Staphylococcus aureus/genetics
12.
BMC Genomics ; 13: 1, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22214261

ABSTRACT

BACKGROUND: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. RESULTS: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. CONCLUSION: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.


Subject(s)
Gene Library , Genome, Protozoan , High-Throughput Nucleotide Sequencing/methods , Base Composition , DNA-Directed RNA Polymerases/metabolism , Genetic Loci , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Reproducibility of Results , Viral Proteins/metabolism
13.
Hum Genet ; 131(5): 665-74, 2012 May.
Article in English | MEDLINE | ID: mdl-22057783

ABSTRACT

We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two tools: simulations under neutrality or selection, and experimental investigation of two regions identified by the HapMap2 project as putatively selected in human populations. Simulations suggested that neutral and selected regions should be readily distinguished and that it should be possible to localize the selected variant to within 40 kb at least half of the time. Re-sequencing of two ~300 kb regions (chr4:158Mb and chr10:22Mb) lacking known targets of selection in HapMap CHB individuals provided strong evidence for positive selection within each and suggested the micro-RNA gene hsa-miR-548c as the best candidate target in one region, and changes in regulation of the sperm protein gene SPAG6 in the other.


Subject(s)
Genome, Human , Selection, Genetic , Sequence Analysis, DNA , Genotype , HapMap Project , Haplotypes , Humans , Models, Biological , Polymorphism, Genetic
14.
Electrophoresis ; 33(23): 3521-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23147856

ABSTRACT

Size selection can be a critical step in preparation of next-generation sequencing libraries. Traditional methods employing gel electrophoresis lack reproducibility, are labour intensive, do not scale well and employ hazardous interchelating dyes. In a high-throughput setting, solid-phase reversible immobilisation beads are commonly used for size-selection, but result in quite a broad fragment size range. We have evaluated and optimised the use of two semi-automated preparative DNA electrophoresis systems, the Caliper Labchip XT and the Sage Science Pippin Prep, for size selection of Illumina sequencing libraries.


Subject(s)
Electrophoresis/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA/analysis , DNA/chemistry , DNA/genetics , Genomics/methods , Humans , Molecular Weight , Polymerase Chain Reaction
15.
Nat Methods ; 5(12): 1005-10, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19034268

ABSTRACT

The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.


Subject(s)
Academies and Institutes , Chromosome Mapping/instrumentation , Genomics/instrumentation , Polymerase Chain Reaction/instrumentation , Sequence Analysis, DNA/instrumentation , Equipment Design
17.
Nat Commun ; 9(1): 791, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476078

ABSTRACT

Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques.


Subject(s)
Arthritis, Rheumatoid/genetics , Microfluidics/methods , RNA/genetics , Single-Cell Analysis/methods , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Microfluidics/economics , Microfluidics/instrumentation , RNA/metabolism , Single-Cell Analysis/economics , Single-Cell Analysis/instrumentation , Synovial Membrane/cytology , Synovial Membrane/metabolism
18.
Mol Cell Endocrinol ; 190(1-2): 125-33, 2002 Apr 25.
Article in English | MEDLINE | ID: mdl-11997186

ABSTRACT

The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.


Subject(s)
Gene Expression Regulation/drug effects , Growth Hormone/pharmacology , Liver/drug effects , Nucleic Acid Hybridization/methods , Animals , Female , Feminization , Hypophysectomy , Liver/physiology , Male , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors
19.
Curr Protoc Hum Genet ; 80: 18.2.1-42, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-26270174

ABSTRACT

In this unit, we describe a set of improvements that have been made to the standard Illumina protocols to make the sequencing process more reliable in a high-throughput environment, reduce amplification bias, narrow the distribution of insert sizes, and reliably obtain high yields of data.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Nucleic Acid Denaturation
20.
Biotechniques ; 53(6): 365-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23227987

ABSTRACT

We have developed a sequencing method on the Pacific Biosciences RS sequencer (the PacBio) for small DNA molecules that avoids the need for a standard library preparation. To date this approach has been applied toward sequencing single-stranded and double-stranded viral genomes, bacterial plasmids, plasmid vector models for DNA-modification analysis, and linear DNA fragments covering an entire bacterial genome. Using direct sequencing it is possible to generate sequence data from as little as 1 ng of DNA, offering a significant advantage over current protocols which typically require 400-500 ng of sheared DNA for the library preparation.


Subject(s)
Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Software , Base Sequence , Gene Library , Genome, Bacterial , Genomics/methods , Molecular Sequence Data , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL