Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(5): 1348-1361.e22, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636128

ABSTRACT

Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.


Subject(s)
Atherosclerosis/pathology , Clonal Hematopoiesis , Hematopoietic Stem Cells/pathology , Aging/pathology , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Bone Marrow/metabolism , Cell Proliferation , Clonal Evolution , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Sleep Deprivation/pathology
2.
Nat Immunol ; 23(4): 605-618, 2022 04.
Article in English | MEDLINE | ID: mdl-35352063

ABSTRACT

Autonomic nerves control organ function through the sympathetic and parasympathetic branches, which have opposite effects. In the bone marrow, sympathetic (adrenergic) nerves promote hematopoiesis; however, how parasympathetic (cholinergic) signals modulate hematopoiesis is unclear. Here, we show that B lymphocytes are an important source of acetylcholine, a neurotransmitter of the parasympathetic nervous system, which reduced hematopoiesis. Single-cell RNA sequencing identified nine clusters of cells that expressed the cholinergic α7 nicotinic receptor (Chrna7) in the bone marrow stem cell niche, including endothelial and mesenchymal stromal cells (MSCs). Deletion of B cell-derived acetylcholine resulted in the differential expression of various genes, including Cxcl12 in leptin receptor+ (LepR+) stromal cells. Pharmacologic inhibition of acetylcholine signaling increased the systemic supply of inflammatory myeloid cells in mice and humans with cardiovascular disease.


Subject(s)
Acetylcholine , Hematopoiesis , Animals , B-Lymphocytes , Cholinergic Agents , Hematopoiesis/genetics , Mice , Stem Cell Niche
3.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301651

ABSTRACT

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Subject(s)
Bone Marrow , Histone Acetyltransferases , Humans , Histone Acetyltransferases/metabolism , Bone Marrow/metabolism , Histones/metabolism , Neutrophils/metabolism , Hypothalamo-Hypophyseal System/metabolism
4.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36827982

ABSTRACT

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Subject(s)
Bone Marrow , Monocytes , Mice , Animals , Bone Marrow Cells , Fasting , Chemokines/metabolism
5.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37499656

ABSTRACT

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Subject(s)
Atherosclerosis , Complement C3 , Animals , Humans , Mice , Atherosclerosis/metabolism , Complement C3/genetics , Complement C3/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Inflammation , Macrophages/metabolism
6.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37160117

ABSTRACT

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Subject(s)
Multiple Sclerosis , Animals , Humans , Mice , Central Nervous System , Interleukin-3 , Microglia , Neuroglia/metabolism
7.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
8.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326622

ABSTRACT

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Subject(s)
Depressive Disorder, Major , Matrix Metalloproteinase 8 , Monocytes , Stress, Psychological , Animals , Humans , Mice , Depressive Disorder, Major/blood , Depressive Disorder, Major/enzymology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Extracellular Space/metabolism , Matrix Metalloproteinase 8/blood , Matrix Metalloproteinase 8/deficiency , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Mice, Inbred C57BL , Monocytes/chemistry , Monocytes/immunology , Monocytes/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Parenchymal Tissue/metabolism , Single-Cell Gene Expression Analysis , Social Behavior , Social Isolation , Stress, Psychological/blood , Stress, Psychological/genetics , Stress, Psychological/immunology , Stress, Psychological/metabolism
10.
Nat Immunol ; 17(2): 159-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26642357

ABSTRACT

Resident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approaches, we show that arterial macrophages arise embryonically from CX3CR1(+) precursors and postnatally from bone marrow-derived monocytes that colonize the tissue immediately after birth. In adulthood, proliferation (rather than monocyte recruitment) sustains arterial macrophages in the steady state and after severe depletion following sepsis. After infection, arterial macrophages return rapidly to functional homeostasis. Finally, survival of resident arterial macrophages depends on a CX3CR1-CX3CL1 axis within the vascular niche.


Subject(s)
Cell Self Renewal , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Receptors, Chemokine/metabolism , Animals , CX3C Chemokine Receptor 1 , Cell Survival , Chemokine CX3CL1/metabolism , Cluster Analysis , Female , Gene Expression Profiling , Immunophenotyping , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Transgenic , Phenotype , Protein Binding , Stem Cell Niche , Transcriptome
11.
Nat Rev Neurosci ; 24(10): 591-604, 2023 10.
Article in English | MEDLINE | ID: mdl-37626176

ABSTRACT

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.


Subject(s)
Depressive Disorder, Major , Humans , Adipose Tissue , Anxiety , Inflammation , Immunity
12.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31732166

ABSTRACT

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Subject(s)
Disease Susceptibility , Macrophages/immunology , Macrophages/metabolism , Animals , Biomarkers , Cell Count , Disease Susceptibility/immunology , ErbB Receptors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Ischemia/etiology , Ischemia/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice , Muscle Cells/immunology , Muscle Cells/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/pathology
13.
Nature ; 607(7919): 578-584, 2022 07.
Article in English | MEDLINE | ID: mdl-35636458

ABSTRACT

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Subject(s)
Brain , Fear , Leukocytes , Motor Neurons , Neural Pathways , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Brain/cytology , Brain/physiology , COVID-19/immunology , Chemokines/immunology , Disease Susceptibility , Fear/physiology , Glucocorticoids/metabolism , Humans , Leukocytes/cytology , Leukocytes/immunology , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Mice , Monocytes/cytology , Monocytes/immunology , Motor Neurons/cytology , Motor Neurons/physiology , Neutrophils/cytology , Neutrophils/immunology , Optogenetics , Orthomyxoviridae Infections/immunology , Paraventricular Hypothalamic Nucleus/physiology , SARS-CoV-2/immunology , Stress, Psychological/immunology , Stress, Psychological/physiopathology
14.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30413362

ABSTRACT

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Subject(s)
Graft Survival/immunology , Immunosuppression Therapy , Inflammation/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organ Transplantation , Allografts , Animals , Biomarkers , HMGB1 Protein/genetics , Immune Tolerance , Immunity, Innate , Immunologic Memory , Macrophages/immunology , Macrophages/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Vimentin/genetics
15.
Nature ; 595(7869): 701-706, 2021 07.
Article in English | MEDLINE | ID: mdl-34262178

ABSTRACT

Communication within the glial cell ecosystem is essential for neuronal and brain health1-3. The influence of glial cells on the accumulation and clearance of ß-amyloid (Aß) and neurofibrillary tau in the brains of individuals with Alzheimer's disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) programs microglia to ameliorate the pathology of AD. Upon recognition of Aß deposits, microglia increase their expression of IL-3Rα-the specific receptor for IL-3 (also known as CD123)-making them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional programming of microglia to endow them with an acute immune response program, enhanced motility, and the capacity to cluster and clear aggregates of Aß and tau. These changes restrict AD pathology and cognitive decline. Our findings identify IL-3 as a key mediator of astrocyte-microglia cross-talk and a node for therapeutic intervention in AD.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/physiology , Interleukin-3/metabolism , Microglia/physiology , Animals , Cell Communication , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/physiology
16.
Circulation ; 150(1): 49-61, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38506045

ABSTRACT

BACKGROUND: Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation. METHODS: We assessed cardiac macrophage subsets using immunofluorescence histology of autopsy specimens from 21 patients with COVID-19 with SARS-CoV-2-associated ARDS and 33 patients who died from other causes. In mice, we compared cardiac immune cell dynamics after SARS-CoV-2 infection with ARDS induced by intratracheal instillation of Toll-like receptor ligands and an ACE2 (angiotensin-converting enzyme 2) inhibitor. RESULTS: In humans, SARS-CoV-2 increased total cardiac macrophage counts and led to a higher proportion of CCR2+ (C-C chemokine receptor type 2 positive) macrophages. In mice, SARS-CoV-2 and virus-free lung injury triggered profound remodeling of cardiac resident macrophages, recapitulating the clinical expansion of CCR2+ macrophages. Treating mice exposed to virus-like ARDS with a tumor necrosis factor α-neutralizing antibody reduced cardiac monocytes and inflammatory MHCIIlo CCR2+ macrophages while also preserving cardiac function. Virus-like ARDS elevated mortality in mice with pre-existing heart failure. CONCLUSIONS: Our data suggest that viral ARDS promotes cardiac inflammation by expanding the CCR2+ macrophage subset, and the associated cardiac phenotypes in mice can be elicited by activating the host immune system even without viral presence in the heart.


Subject(s)
COVID-19 , Cardiomyopathies , Respiratory Distress Syndrome , SARS-CoV-2 , COVID-19/immunology , COVID-19/complications , COVID-19/pathology , Animals , Humans , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Mice , Male , Female , Cardiomyopathies/immunology , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Cardiomyopathies/virology , Macrophages/immunology , Macrophages/pathology , Macrophages/metabolism , Inflammation/pathology , Middle Aged , Myocardium/pathology , Myocardium/immunology , Mice, Inbred C57BL , Aged
17.
Nature ; 566(7744): 383-387, 2019 02.
Article in English | MEDLINE | ID: mdl-30760925

ABSTRACT

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Hematopoiesis/physiology , Sleep/physiology , Animals , Antigens, Ly/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Bone Marrow Cells/metabolism , Female , Hematopoiesis/drug effects , Hypothalamic Area, Lateral/metabolism , Macrophage Colony-Stimulating Factor/biosynthesis , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Monocytes/drug effects , Monocytes/metabolism , Myelopoiesis/drug effects , Neutrophils/metabolism , Orexin Receptors/deficiency , Orexin Receptors/metabolism , Orexins/biosynthesis , Orexins/deficiency , Orexins/metabolism , Orexins/pharmacology , Sleep/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/prevention & control
18.
Nature ; 566(7742): 115-119, 2019 02.
Article in English | MEDLINE | ID: mdl-30700910

ABSTRACT

The biochemical response to food intake must be precisely regulated. Because ingested sugars and fats can feed into many anabolic and catabolic pathways1, how our bodies handle nutrients depends on strategically positioned metabolic sensors that link the intrinsic nutritional value of a meal with intermediary metabolism. Here we describe a subset of immune cells-integrin ß7+ natural gut intraepithelial T lymphocytes (natural IELs)-that is dispersed throughout the enterocyte layer of the small intestine and that modulates systemic metabolism. Integrin ß7- mice that lack natural IELs are metabolically hyperactive and, when fed a high-fat and high-sugar diet, are resistant to obesity, hypercholesterolaemia, hypertension, diabetes and atherosclerosis. Furthermore, we show that protection from cardiovascular disease in the absence of natural IELs depends on the enteroendocrine-derived incretin GLP-12, which is normally controlled by IELs through expression of the GLP-1 receptor. In this metabolic control system, IELs modulate enteroendocrine activity by acting as gatekeepers that limit the bioavailability of GLP-1. Although the function of IELs may prove advantageous when food is scarce, present-day overabundance of diets high in fat and sugar renders this metabolic checkpoint detrimental to health.


Subject(s)
Cardiovascular Diseases/metabolism , Disease Progression , Intestine, Small/cytology , Intraepithelial Lymphocytes/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Disease Models, Animal , Eating , Enterocytes/cytology , Enterocytes/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/prevention & control , Mice
19.
Immunity ; 38(2): 296-308, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23333075

ABSTRACT

Macrophages frequently infiltrate tumors and can enhance cancer growth, yet the origins of the macrophage response are not well understood. Here we address molecular mechanisms of macrophage production in a conditional mouse model of lung adenocarcinoma. We report that overproduction of the peptide hormone Angiotensin II (AngII) in tumor-bearing mice amplifies self-renewing hematopoietic stem cells (HSCs) and macrophage progenitors. The process occurred in the spleen but not the bone marrow, and was independent of hemodynamic changes. The effects of AngII required direct hormone ligation on HSCs, depended on S1P(1) signaling, and allowed the extramedullary tissue to supply new tumor-associated macrophages throughout cancer progression. Conversely, blocking AngII production prevented cancer-induced HSC and macrophage progenitor amplification and thus restrained the macrophage response at its source. These findings indicate that AngII acts upstream of a potent macrophage amplification program and that tumors can remotely exploit the hormone's pathway to stimulate cancer-promoting immunity.


Subject(s)
Adenocarcinoma/metabolism , Angiotensin II/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Macrophages/metabolism , Spleen/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Angiotensin II/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Communication , Cell Movement , Cell Proliferation , Gene Expression , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lysophospholipids/metabolism , Macrophages/pathology , Mice , Mice, Transgenic , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Spleen/pathology , Tumor Burden
20.
Circ Res ; 126(9): 1242-1259, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32324501

ABSTRACT

Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.


Subject(s)
Cardiovascular Diseases/prevention & control , Healthy Lifestyle , Heart Disease Risk Factors , Hematopoiesis , Immunity, Innate , Myeloid Cells/immunology , Risk Reduction Behavior , Animals , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Diet, Healthy , Exercise , Humans , Myeloid Cells/metabolism , Protective Factors , Risk Assessment , Signal Transduction , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL