Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38310524

ABSTRACT

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Subject(s)
Mesenchymal Stem Cells , Neutrophils , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Neutrophils/metabolism , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Animals , Phagocytosis
2.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735943

ABSTRACT

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Subject(s)
Glucose , Mesenchymal Stem Cells , Mitochondria , NAD , Osteogenesis , Sirtuin 1 , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/physiology , Mice , Humans , Animals , Mitochondria/metabolism , Glucose/metabolism , NAD/metabolism , Cell Differentiation
3.
Prev Med ; 178: 107820, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092329

ABSTRACT

OBJECTIVE: Although the World Health Organization and many governments have recategorized COVID-19 as a generally mild to moderately severe disease, consecutive pandemic waves driven by immune escape variants have underscored the need for timely and accurate prediction of the next outbreak. Nevertheless, little attention has been paid to translating genomic data and infection- and vaccine-induced immunity into direct estimates. METHODS: We retrieved epidemiologic and genomic data shortly before pandemic waves across 14 developed countries from late 2021 to mid-2022 and examined associations between early-stage variant competition, infection- and vaccine-induced immunity, and the time intervals between wave peaks. We applied regression analysis and the generalized estimating equation method to construct an inferential model. RESULTS: Each per cent increase in the proportion of a new variant was associated with a 1.0% reduction in interpeak intervals on average. Curvilinear associations between vaccine-induced immunity and outcome variables were observed, suggesting that reaching a critical vaccine distribution rate may decrease the caseload of the upcoming wave. CONCLUSIONS: By leveraging readily accessible pre-outbreak genomic and epidemiologic data, our results not only substantiate the predictive potential of early variant fractions but also propose that immunity acquired through infection alone may not sufficiently mitigate transmission. Conversely, a rapid and widespread vaccination initiative appears to be correlated with a decrease in disease incidence.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics , Genomics , COVID-19/epidemiology , Disease Outbreaks
4.
Thorax ; 78(5): 504-514, 2023 05.
Article in English | MEDLINE | ID: mdl-35450943

ABSTRACT

RATIONALE: Acute respiratory distress syndrome (ARDS) is a lethal complication of severe bacterial pneumonia due to the inability to dampen overexuberant immune responses without compromising pathogen clearance. Both of these processes involve tissue-resident and bone marrow (BM)-recruited macrophage (MΦ) populations which can be polarised to have divergent functions. Surprisingly, despite the known immunomodulatory properties of mesenchymal stem cells (MSCs), simultaneous interactions with tissue-resident and recruited BMMΦ populations are largely unexplored. OBJECTIVES: We assessed the therapeutic use of human placental MSCs (PMSCs) in severe bacterial pneumonia with elucidation of the roles of resident alveolar MΦs (AMΦs) and BMMΦs. METHODS: We developed a lethal, murine pneumonia model using intratracheal infection of a clinically relevant Klebsiella pneumoniae (KP) strain with subsequent intravenous human PMSC treatment. Pulmonary AMΦ and recruited BMMΦ analyses, histological evaluation, bacterial clearance and mice survival were assessed. To elucidate the role of resident AMΦs in improving outcome, we performed AMΦ depletion in the KP-pneumonia model with intratracheal clodronate pretreatment. MEASUREMENTS AND MAIN RESULTS: Human PMSC treatment decreased tissue injury and improved survival of severe KP-pneumonia mice by decreasing the presence and function of recruited M1 BMMΦ while preserving M2 AMΦs and enhancing their antibacterial functions. Interestingly, PMSC therapy failed to rescue AMΦ-depleted mice with KP pneumonia, and PMSC-secreted IL-1ß was identified as critical in increasing AMΦ antibacterial activities to significantly improve pathogen clearance-especially bacteraemia-and survival. CONCLUSIONS: Human PMSC treatment preferentially rescued resident M2 AMΦs over recruited M1 BMMΦs with overall M2 polarisation to improve KP-related ARDS survival.


Subject(s)
Mesenchymal Stem Cells , Pneumonia, Bacterial , Respiratory Distress Syndrome , Female , Humans , Mice , Animals , Pregnancy , Bone Marrow , Klebsiella , Placenta , Macrophages , Pneumonia, Bacterial/therapy , Pneumonia, Bacterial/microbiology , Respiratory Distress Syndrome/therapy , Klebsiella pneumoniae , Macrophages, Alveolar
5.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108686

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease with chronic inflammation, bone erosion, and joint deformation. Synovial tissue in RA patients is full of proinflammatory cytokines and infiltrated immune cells, such as T help (Th) 9, Th17, macrophages, and osteoclasts. Recent reports emphasized a new member of the interleukin (IL)-10 family, IL-26, an inducer of IL-17A that is overexpressed in RA patients. Our previous works found that IL-26 inhibits osteoclastogenesis and conducts monocyte differentiation toward M1 macrophages. In this study, we aimed to clarify the effect of IL-26 on macrophages linking to Th9 and Th17 in IL-9 and IL-17 expression and downstream signal transduction. Murine and human macrophage cell lines and primary culture cells were used and stimulated by IL26. Cytokines expressions were evaluated by flow cytometry. Signal transduction and transcription factors expression were detected by Western blot and real time-PCR. Our results show that IL-26 and IL-9 colocalized in macrophage in RA synovium. IL-26 directly induces macrophage inflammatory cytokines IL-9 and IL-17A expression. IL-26 increases the IL-9 and IL-17A upstream mechanisms IRF4 and RelB expression. Moreover, the AKT-FoxO1 pathway is also activated by IL-26 in IL-9 and IL-17A expressing macrophage. Blockage of AKT phosphorylation enhances IL-26 stimulating IL-9-producing macrophage cells. In conclusion, our results support that IL-26 promotes IL-9- and IL-17-expressing macrophage and might initiate IL-9- and IL-17-related adaptive immunity in rheumatoid arthritis. Targeting IL-26 may a potential therapeutic strategy for rheumatoid arthritis or other IL-9 plus IL-17 dominant diseases.


Subject(s)
Arthritis, Rheumatoid , Interleukin-17 , Animals , Humans , Mice , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Interleukin-17/genetics , Interleukin-17/pharmacology , Interleukin-17/metabolism , Interleukin-9/metabolism , Macrophages/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Th17 Cells , Interleukins/pharmacology
6.
J Immunol ; 204(5): 1158-1172, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31969388

ABSTRACT

Galectin-9 is a risk gene in inflammatory bowel disease. By transcriptomic analyses of ileal biopsies and PBMCs from inflammatory bowel disease patients, we identified a positive correlation between galectin-9 expression and colitis severity. We observed that galectin-9-deficient T cells were less able to induce T cell-mediated colitis. However, several mouse-based studies reported that galectin-9 treatment induces T cell apoptosis and ameliorates autoimmune diseases in an exogenously modulated manner, indicating a complicated regulation of galectin-9 in T cells. We found that galectin-9 is expressed mainly inside T cells, and its secreted form is barely detected under physiological conditions. Endogenous galectin-9 was recruited to immune synapses upon T cell activation. Moreover, proximal TCR signaling was impaired in galectin-9-deficient T cells, and proliferation of these cells was decreased through an intracellularly modulated manner. Th17 cell differentiation was downregulated in galectin-9-deficient T cells, and this impairment can be rescued by strong TCR signaling. Taken together, these findings suggest that intracellular galectin-9 is a positive regulator of T cell activation and modulates the pathogenesis of autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Cell Differentiation/immunology , Galectins/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Th17 Cells/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Cell Differentiation/genetics , Galectins/genetics , Mice , Mice, Knockout , Receptors, Antigen, T-Cell/genetics , Signal Transduction/genetics , Th17 Cells/pathology
7.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163121

ABSTRACT

Type 1 diabetes (T1D) is caused by the destruction of ß cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective treatment for T1D. However, the survival of islet grafts is often disrupted by recurrent autoimmunity. Alpha-lipoic acid (ALA) has been reported to have immunomodulatory effects and, therefore, may have therapeutic potential in the treatment of T1D. In this study, we investigated the therapeutic potential of ALA in autoimmunity inhibition. We treated non-obese diabetic (NOD) mice with spontaneous diabetes and islet-transplantation mice with ALA. The onset of diabetes was decreased and survival of the islet grafts was extended. The populations of Th1 cells decreased, and regulatory T cells (Tregs) increased in ALA-treated mice. The in vitro Treg differentiation was significantly increased by treatment with ALA. The adoptive transfer of ALA-differentiated Tregs into NOD recipients improved the outcome of the islet grafts. Our results showed that in vivo ALA treatment suppressed spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Tregs. Our study also demonstrated the therapeutic potential of ALA in Treg-based cell therapies and islet transplantation used in the treatment of T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/prevention & control , Islets of Langerhans Transplantation/methods , Islets of Langerhans/cytology , T-Lymphocytes, Regulatory/immunology , Thioctic Acid/pharmacology , Animals , Antioxidants/pharmacology , Cell Differentiation , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Female , Graft Survival , Mice , Mice, Inbred NOD , Th1 Cells
8.
J Cell Physiol ; 236(3): 2023-2035, 2021 03.
Article in English | MEDLINE | ID: mdl-32730662

ABSTRACT

The downregulation of melatonin receptor 1A (MTNR1A) is associated with a range of pathological conditions, including membranous nephropathy. Knowledge of the mechanism underlying MTNR1A expression has been limited to the transcriptional regulation level. Here, RNA interference screening in human kidney cells revealed that heterogeneous nuclear ribonucleoprotein L (hnRNPL) upregulated MTNR1A RNA post-transcriptionally. hnRNPL knockdown or overexpression led to increased or decreased levels of cyclic adenosine monophosphate-responsive element-binding protein phosphorylation, respectively. Molecular studies showed that cytoplasmic hnRNPL exerts a stabilizing effect on the MTNR1A transcript through CA-repeat elements in its coding region. Further studies revealed that the interaction between hnRNPL and MTNR1A serves to protect MNTR1A RNA degradation by the exosome component 10 protein. MTNR1A, but not hnRNPL, displays a diurnal rhythm in mouse kidneys. Enhanced levels of MTNR1A recorded at midnight correlated with robust binding activity between cytoplasmic hnRNPL and the MTNR1A transcript. Both hnRNPL and MTNR1A were decreased in the cytoplasm of tubular epithelial cells from experimental membranous nephropathy kidneys, supporting their clinical relevance. Collectively, our data identified cytoplasmic hnRNPL as a novel player in the upregulation of MTNR1A expression in renal tubular epithelial cells, and as a potential therapeutic target.


Subject(s)
Cytoplasm/metabolism , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Kidney Tubules/metabolism , Receptor, Melatonin, MT1/genetics , Animals , Cell Line , Circadian Rhythm/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Epithelial Cells/metabolism , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/pathology , Humans , Kidney Tubules/pathology , Mice, Inbred BALB C , Models, Biological , Open Reading Frames/genetics , Phosphorylation , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Melatonin, MT1/metabolism , Repetitive Sequences, Nucleic Acid/genetics , Up-Regulation/genetics
9.
J Biomed Sci ; 27(1): 72, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32498686

ABSTRACT

On March 11, 2020, the World Health Organization declared the worldwide spread of the infectious disease COVID-19, caused by a new strain of coronavirus, SARS-CoV-2, as a pandemic. Like in all other infectious diseases, the host immune system plays a key role in our defense against SARS-CoV-2 infection. However, viruses are able to evade the immune attack and proliferate and, in susceptible individuals, cause severe inflammatory response known as cytokine storm, particularly in the lungs. The advancement in our understanding of the mechanisms underlying the host immune responses promises to facilitate the development of approaches for prevention or treatment of diseases. Components of immune system, such as antibodies, can also be used to develop sensitive and specific diagnostic methods as well as novel therapeutic agents. In this review, we summarize our knowledge about how the host mounts immune responses to infection by SARS-CoV-2. We also describe the diagnostic methods being used for COVID-19 identification and summarize the current status of various therapeutic strategies, including vaccination, being considered for treatment of the disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Diagnostic Techniques and Procedures/instrumentation , Pneumonia, Viral/immunology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2
10.
Cell Microbiol ; 21(10): e13085, 2019 10.
Article in English | MEDLINE | ID: mdl-31290210

ABSTRACT

Staphylococcus aureus is frequently isolated from patients with community-acquired pneumonia and acute respiratory distress syndrome (ARDS). ARDS is associated with staphylococcal phosphatidylinositol-specific phospholipase C (PI-PLC); however, the role of PI-PLC in the pathogenesis and progression of ARDS remains unknown. Here, we showed that recombinant staphylococcal PI-PLC possesses enzyme activity that causes shedding of glycosylphosphatidylinositol-anchored CD55 and CD59 from human umbilical vein endothelial cell surfaces and triggers cell lysis via complement activity. Intranasal infection with PI-PLC-positive S. aureus resulted in greater neutrophil infiltration and increased pulmonary oedema compared with a plc-isogenic mutant. Although indistinguishable proinflammatory genes were induced, the wild-type strain activated higher levels of C5a in lung tissue accompanied by elevated albumin instillation and increased lactate dehydrogenase release in bronchoalveolar lavage fluid compared with the plc- mutant. Following treatment with cobra venom factor to deplete complement, the wild-type strain with PI-PLC showed a reduced ability to trigger pulmonary permeability and tissue damage. PI-PLC-positive S. aureus induced the formation of membrane attack complex, mainly on type II pneumocytes, and reduced the level of CD55/CD59, indicating the importance of complement regulation in pulmonary injury. In conclusion, S. aureus PI-PLC sensitised tissue to complement activation leading to more severe tissue damage, increased pulmonary oedema, and ARDS progression.


Subject(s)
Bacterial Proteins/metabolism , Complement System Proteins/metabolism , Phosphoinositide Phospholipase C/metabolism , Pulmonary Edema/immunology , Pulmonary Edema/microbiology , Respiratory Distress Syndrome/microbiology , Staphylococcal Infections/immunology , Staphylococcus aureus/enzymology , Alveolar Epithelial Cells/enzymology , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/microbiology , Animals , Bacterial Proteins/genetics , CD55 Antigens/immunology , CD59 Antigens/immunology , Cytokines/metabolism , Glycosylphosphatidylinositols/immunology , Glycosylphosphatidylinositols/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred BALB C , Phosphoinositide Phospholipase C/genetics , Pulmonary Edema/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
11.
Mediators Inflamm ; 2020: 1237281, 2020.
Article in English | MEDLINE | ID: mdl-32587467

ABSTRACT

PURPOSE: Interleukin-1α (IL-1α) is a potent cytokine that plays a role in inflammatory arthritis and bone loss. Decoy receptor 3 (DCR3) is an immune modulator of monocytes and macrophages. The aim of this study was to investigate the mechanism of DCR3 in IL-1α-induced osteoclastogenesis. METHODS: We treated murine macrophages with DCR3 during receptor activator of nuclear factor kappa Β ligand- (RANKL-) plus IL-1α-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed using a pit formation assay. The mechanisms of inhibition were studied by biochemical analyses, including RT-PCR, immunofluorescent staining, flow cytometry, an apoptosis assay, immunoblotting, and ELISA. RESULTS: DCR3 suppresses IL-1α-induced osteoclastogenesis in both primary murine bone marrow-derived macrophages (BMM) and RAW264.7 cells as it inhibits bone resorption. DCR3 induces RANKL-treated osteoclast precursor cells to express IL-1α, secretory IL-1ra (sIL-1ra), intracellular IL-1ra (icIL-1ra), reactive oxygen species (ROS), and Fas ligand and to activate IL-1α-induced interleukin-1 receptor-associated kinase 4 (IRAK4). The suppression of DCR3 during RANKL- or IL-1α-induced osteoclastogenesis may be due to the abundant secretion of IL-1ra, accumulation of ROS, and expression of Fas ligand in apoptotic osteoclast precursor cells. CONCLUSIONS: We concluded that there is an inhibitory effect of DCR3 on osteoclastogenesis via ROS accumulation and ROS-induced Fas ligand, IL-1α, and IL-1ra expression. Our results suggested that the upregulation of DCR3 in preosteoclasts might be a therapeutic target in inflammatory IL-1α-induced bone resorption.


Subject(s)
Fas Ligand Protein/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1alpha/metabolism , Osteoclasts/metabolism , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor, Member 6b/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Death/genetics , Cell Death/physiology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunoblotting , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Osteoclasts/cytology , RAW 264.7 Cells , Tartrate-Resistant Acid Phosphatase/metabolism
12.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403220

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn's disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.


Subject(s)
Cell Transdifferentiation/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , T-Lymphocytes, Helper-Inducer/immunology , Cell Transdifferentiation/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/metabolism , Cytokines/metabolism , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism
13.
Int J Mol Sci ; 21(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334069

ABSTRACT

Inflammatory colon diseases, which are a global health concern, include a variety of gastrointestinal tract disorders, such as inflammatory bowel disease and colon cancer. The pathogenesis of these colon disorders involves immune alterations with the pronounced infiltration of innate and adaptive immune cells into the intestines and the augmented expression of mucosal pro-inflammatory cytokines stimulated by commensal microbiota. Epidemiological studies during the past half century have shown that the proportion of obese people in a population is associated with the incidence and pathogenesis of gastrointestinal tract disorders. The advancement of understanding of the immunological basis of colon disease has shown that adipocyte-derived biologically active substances (adipokines) modulate the role of innate and adaptive immune cells in the progress of intestinal inflammation. The biomedical significance in immunological homeostasis of adipokines, including adiponectin, leptin, apelin and resistin, is clear. In this review, we highlight the existing literature on the effect and contribution of adipokines to the regulation of immunological homeostasis in inflammatory colon diseases and discuss their crucial roles in disease etiology and pathogenesis, as well as the implications of these results for new therapies in these disorders.


Subject(s)
Adipokines/metabolism , Disease Susceptibility , Homeostasis , Immunomodulation , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Adipokines/pharmacology , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animals , Biomarkers , Homeostasis/drug effects , Humans , Immune System/immunology , Immune System/metabolism , Immune System/pathology , Immunomodulation/drug effects , Inflammatory Bowel Diseases/pathology
14.
Int J Mol Sci ; 21(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369982

ABSTRACT

Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.


Subject(s)
Colonic Diseases/etiology , Colonic Diseases/metabolism , Protein Processing, Post-Translational , Transcription Factors/metabolism , Acetylation , Animals , Colonic Diseases/pathology , Humans , Methylation , Phosphorylation , Sumoylation , Ubiquitination
15.
Int J Mol Sci ; 21(14)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708387

ABSTRACT

Multipotent human mesenchymal stem cells (MSCs) harbor clinically relevant immunomodulation, and HLA-G, a non-classical MHC class I molecule with highly restricted tissue expression, is one important molecule involved in these processes. Understanding of the natural regulatory mechanisms involved in expression of this elusive molecule has been difficult, with near exclusive reliance on cancer cell lines. We therefore studied the transcriptional control of HLA-G in primary isolated human bone marrow- (BM), human embryonic stem cell-derived (hE-), as well as placenta-derived MSCs (P-MSCs), and found that all 3 types of MSCs express 3 of the 7 HLA-G isoforms at the gene level; however, fibroblasts did not express HLA-G. Protein validation using BM- and P-MSCs demonstrated expression of 2 isoforms including a larger HLA-G-like protein. Interferon-γ (IFN-γ) stimulation upregulated both gene and protein expression in MSCs but not the constitutively expressing JEG-3 cell line. Most interestingly in human MSCs and placental tissue, hypomethylation of CpG islands not only occurs on the HLA-G proximal promoter but also on the gene body as well, a pattern not seen in either of the 2 commonly used choriocarcinoma cell lines which may contribute to the unique HLA-G expression patterns and IFN-γ-responsiveness in MSCs. Our study implicates the importance of using normal cells and tissues for physiologic understanding of tissue-specific transcriptional regulation, and highlight the utility of human MSCs in unraveling the transcriptional regulation of HLA-G for better therapeutic application.


Subject(s)
Bone Marrow Cells/metabolism , DNA Methylation/genetics , DNA/metabolism , Embryonic Stem Cells/metabolism , HLA-G Antigens/metabolism , Mesenchymal Stem Cells/metabolism , Placenta/cytology , Azacitidine/pharmacology , Cell Line, Tumor , CpG Islands , DNA Methylation/drug effects , Demethylation/drug effects , Female , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HLA-G Antigens/genetics , Humans , Interferon-gamma/pharmacology , Placenta/metabolism , Pregnancy , Promoter Regions, Genetic , Protein Isoforms , Tandem Mass Spectrometry
16.
Article in English | MEDLINE | ID: mdl-30670429

ABSTRACT

This study investigated the molecular epidemiology of carbapenem-resistant Acinetobacter nosocomialis and Acinetobacter pittii (ANAP). Clinical isolates of Acinetobacter spp. collected by the biennial nationwide Taiwan Surveillance of Antimicrobial Resistance program from 2010 to 2014 were subjected to species identification, antimicrobial susceptibility testing, and PCR for detection of carbapenemase genes. Whole-genome sequencing or PCR mapping was performed to study the genetic surroundings of the carbapenemase genes. Among 1,041 Acinetobacter isolates, the proportion of ANAP increased from 11% in 2010 to 22% in 2014. The rate of carbapenem resistance in these isolates increased from 7.5% (3/40) to 22% (14/64), with a concomitant increase in their resistance to other antibiotics. The blaOXA-72 and blaOXA-58 genes were highly prevalent in carbapenem-resistant ANAP. Various genetic structures were found upstream of blaOXA-58 in different plasmids. Among the plasmids found to contain blaOXA-72 flanked by XerC/XerD, pAB-NCGM253-like was identified in 8 of 10 isolates. Conjugations of plasmids carrying blaOXA-72 or blaOXA-58 to A. baumannii were successful. In addition, three isolates with chromosome-located blaOXA-23 embedded in AbGRI1-type structure with disruption of genes other than comM were detected. Two highly similar plasmids carrying class I integron containing blaIMP-1 and aminoglycoside resistance genes were also found. The universal presence of blaOXA-272/213-like on A. pittii chromosomes and their lack of contribution to carbapenem resistance indicate its potential to be a marker for species identification. The increase of ANAP, along with their diverse mechanisms of carbapenem resistance, may herald their further spread and warrants close monitoring.


Subject(s)
Acinetobacter Infections/epidemiology , Acinetobacter/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Carbapenems/therapeutic use , beta-Lactamases/genetics , Acinetobacter/drug effects , Acinetobacter/isolation & purification , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Drug Resistance, Bacterial/genetics , Genome, Bacterial/genetics , Humans , Longitudinal Studies , Microbial Sensitivity Tests , Molecular Epidemiology , Plasmids/genetics , Taiwan/epidemiology , Whole Genome Sequencing
17.
Toxicol Appl Pharmacol ; 378: 114641, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31254568

ABSTRACT

Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). This disease leads to intestinal obstruction with or without peritonitis. The imbalance between the populations of Th17 and regulatory T (Treg) cells (higher Th17 cells and lower Treg cells) is part of the pathogenesis of EPS formation. We demonstrated that dimethyl sulfoxide (DMSO) effectively inhibited autoimmune diabetes recurrence in the islet transplantation of NOD mice via the induction of the differentiation of Treg cells. In this study, we investigated the therapeutic potential of DMSO in the inhibition of EPS formation by a mouse model. Under DMSO treatment, the thickening of the parietal and visceral peritoneum was significantly reduced. The populations of CD4, CD8, and IFN-γ-producing CD4 and CD8 T cells were decreased. The populations of IL-4-producing CD4 T lymphocytes, IL-10-producing CD4 T lymphocytes, CD4 CD69 T lymphocytes and Treg lymphocytes were increased. The expression levels of the cytokines IFN-γ, IL-17a, TNF-α and IL-23, in ascites, were significantly decreased following the DMSO treatment. Furthermore, the differentiation of Treg cells was induced by DMSO from naïve CD4 T cells in vitro, and these cells were adoptively transferred into the EPS mice and significantly prevented EPS formation, exhibiting a comparable effect to the in vivo DMSO treatment. We also demonstrated that the differentiation of Treg cells by DMSO occurred via the activation of STAT5 by its epigenetic effect, without altering the PI3K-AKT-mTOR or Raf-ERK pathways. Our results demonstrated, for the first time, that in vivo DMSO treatment suppresses EPS formation in a mouse model. Furthermore, the adoptive transfer of Treg cells that were differentiated from naïve CD4 T cells by an in vitro DMSO treatment exhibited a similar effect to the in vivo DMSO treatment for the prevention of EPS formation.


Subject(s)
Dimethyl Sulfoxide/immunology , Peritoneal Fibrosis/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer/methods , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytokines/immunology , Diabetes Mellitus, Type 1/immunology , Female , Interleukin-17/immunology , Islets of Langerhans Transplantation/methods , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/immunology , Th17 Cells/immunology
18.
Stem Cells ; 36(6): 903-914, 2018 06.
Article in English | MEDLINE | ID: mdl-29396902

ABSTRACT

Multilineage tissue-source mesenchymal stem cells (MSCs) possess strong immunomodulatory properties and are excellent therapeutic agents, but require constant isolation from donors to combat replicative senescence. The differentiation of human induced pluripotent stem cells (iPSCs) into MSCs offers a renewable source of MSCs; however, reports on their immunomodulatory capacity have been discrepant. Using MSCs differentiated from iPSCs reprogrammed using diverse cell types and protocols, and in comparison to human embryonic stem cell (ESC)-MSCs and bone marrow (BM)-MSCs, we performed transcriptome analyses and assessed for functional immunomodulatory properties. Differentiation of MSCs from iPSCs results in decreased c-Myc expression and its downstream pathway along with a concomitant downregulation in the DNA replication pathway. All four lines of iPSC-MSCs can significantly suppress in vitro activated human peripheral blood mononuclear cell (PBMC) proliferation to a similar degree as ESC-MSCs and BM-MSCs, and modulate CD4 T lymphocyte fate from a type 1 helper T cell (Th1) and IL-17A-expressing (Th17) cell fate to a regulatory T cell (Treg) phenotype. Moreover, iPSC-MSCs significantly suppress cytotoxic CD8 T proliferation, activation, and differentiation into type 1 cytotoxic T (Tc1) and IL-17-expressing CD8 T (Tc17) cells. Coculture of activated PBMCs with human iPSC-MSCs results in an overall shift of secreted cytokine profile from a pro-inflammatory environment to a more immunotolerant milieu. iPSC-MSC immunomodulation was also validated in vivo in a mouse model of induced inflammation. These findings support that iPSC-MSCs possess low oncogenicity and strong immunomodulatory properties regardless of cell-of-origin or reprogramming method and are good potential candidates for therapeutic use. Stem Cells 2018;36:903-914.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Differentiation , Down-Regulation , Humans , Immunomodulation , Mice
20.
Int J Mol Sci ; 20(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884802

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anticitrullinated peptide antibodies. The orchestra of the inflammatory process among various immune cells, cytokines, chemokines, proteases, matrix metalloproteinases (MMPs), and reactive oxidative stress play critical immunopathologic roles in the inflammatory cascade of the joint environment, leading to clinical impairment and RA. With the growing understanding of the immunopathogenic mechanisms, increasingly novel marked and potential biologic agents have merged for the treatment of RA in recent years. In this review, we focus on the current understanding of pathogenic mechanisms, highlight novel biologic disease-modifying antirheumatic drugs (DMRADs), targeted synthetic DMRADs, and immune-modulating agents, and identify the applicable immune-mediated therapeutic strategies of the near future. In conclusion, new therapeutic approaches are emerging through a better understanding of the immunopathophysiology of RA, which is improving disease outcomes better than ever.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/therapy , Immunomodulation , Inflammation/therapy , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Antirheumatic Agents/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Chemokines/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/immunology , Rheumatoid Factor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL