Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 30(19): 127456, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32739400

ABSTRACT

The protein kinase TNK2 (ACK1) is an emerging drug target for a variety of indications, in particular for cancer where it plays a key role transmitting cell survival, growth and proliferative signals via modification of multiple downstream effectors by unique tyrosine phosphorylation events. Scaffold morphing based on our previous TNK2 inhibitor XMD8-87 identified urea 17 from which we developed the potent and selective compound 32. A co-crystal structure was obtained showing 32 interacting primarily with the main chain atoms of an alanine residue of the hinge region. Additional H-bonds exist between the urea NHs and the Thr205 and Asp270 residues.


Subject(s)
Benzodiazepinones/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Benzodiazepinones/chemical synthesis , Benzodiazepinones/metabolism , Cell Line , Crystallography, X-Ray , Drug Stability , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 30(4): 126948, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31928839

ABSTRACT

The SAR of a series of benzopyrimidodiazepinone inhibitors of TNK2 was developed, starting from the potent and selective compound XMD8-87. A diverse set of anilines was introduced in an effort to improve the in vivo PK profile and minimize the risk of quinone diimine formation.


Subject(s)
Azepines/chemistry , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Azepines/metabolism , Azepines/pharmacokinetics , Cell Line, Tumor , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
3.
Transl Res ; 249: 49-73, 2022 11.
Article in English | MEDLINE | ID: mdl-35691544

ABSTRACT

As an anti-inflammatory strategy, MAPK-activated protein kinase-2 (MK2) inhibition can potentially avoid the clinical failures seen for direct p38 inhibitors, especially tachyphylaxis. CC-99677, a selective targeted covalent MK2 inhibitor, employs a rare chloropyrimidine that bonds to the sulfur of cysteine 140 in the ATP binding site via a nucleophilic aromatic substitutions (SNAr) mechanism. This irreversible mechanism translates biochemical potency to cells shown by potent inhibition of heat shock protein 27 (HSP27) phosphorylation in LPS-activated monocytic THP-1 cells. The cytokine inhibitory profile of CC-99677 differentiates it from known p38 inhibitors, potentially suppressing a p38 pathway inflammatory response while avoiding tachyphylaxis. Dosed orally, CC-99677 is efficacious in a rat model of ankylosing spondylitis. Single doses, 3 to 400 mg, in healthy human volunteers show linear pharmacokinetics and apparent sustained tumor necrosis factor-α inhibition, with a favorable safety profile. These results support further development of CC-99677 for autoimmune diseases like ankylosing spondylitis.


Subject(s)
Autoimmune Diseases , Spondylitis, Ankylosing , Adenosine Triphosphate , Animals , Anti-Inflammatory Agents , Autoimmune Diseases/drug therapy , Cysteine , HSP27 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides , Protein Serine-Threonine Kinases , Rats , Sulfur , Tumor Necrosis Factor-alpha , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL