ABSTRACT
According to the latest guidelines of European and American medical societies, genetic testing (GT) is essential in cardiovascular diseases for establishing diagnosis, predicting prognosis, enabling initiation of disease-modifying therapy, and preventing sudden cardiac death. The GT result may be relevant for cascade GT in the patient's relatives, for planning his/her profession and physical activity, and for procreative counseling. This position statement has been prepared due to the scarcity of GT in cardiovascular diseases in Poland and the need to expand its availability. We give a concise description of the genetic background of cardiomyopathies, channelopathies, aortopathies, familial hypercholesterolemia, pheochromocytomas, and paragangliomas. The article discusses various aspects of GT in specific populations, such as children or athletes, and also presents prenatal genetic diagnostics. We propose recommendations for GT and counselling, which take into account Polish needs and capabilities. We give an outline of legal regulations, good clinical practice in GT with respect for patient rights, the role of cardiologists and clinical geneticists in GT planning and post-test counseling, and the requirements for laboratories performing genetic tests. The Polish Cardiac Society and Polish Society of Human Genetics experts speak with one voice with cardiovascular patient communities to underline the need for a law on GT and increasing the availability of GT for cardiovascular patients.
Subject(s)
Cardiovascular Diseases , Genetic Testing , Societies, Medical , Humans , Poland , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Cardiology/standards , Genetic Counseling , FemaleABSTRACT
According to the latest guidelines of European and American medical societies, genetic testing (GT) is essential in cardiovascular diseases for establishing diagnosis, predicting prognosis, enabling initiation of disease-modifying therapy, and preventing sudden cardiac death. The GT result may be relevant for cascade GT in the patient's relatives, for planning his/her profession and physical activity, and for procreative counseling. This position statement has been prepared due to the scarcity of GT in cardiovascular diseases in Poland and the need to expand its availability. We give a concise description of the genetic background of cardiomyopathies, channelopathies, aortopathies, familial hypercholesterolemia, pheochromocytomas, and paragangliomas. The article discusses various aspects of GT in specific populations, such as children or athletes, and also presents prenatal genetic diagnostics. We propose recommendations for GT and counselling, which take into account Polish needs and capabilities. We give an outline of legal regulations, good clinical practice in GT with respect for patient rights, the role of cardiologists and clinical geneticists in GT planning and post-test counseling, and the requirements for laboratories performing genetic tests. The Polish Cardiac Society and Polish Society of Human Genetics experts speak with one voice with cardiovascular patient communities to underline the need for a law on GT and increasing the availability of GT for cardiovascular patients.
Subject(s)
Cardiovascular Diseases , Genetic Testing , Societies, Medical , Humans , Poland , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Cardiology/standards , Genetic Counseling , FemaleABSTRACT
BACKGROUND: Numerous prognostic factors have been proposed for cardiac amyloidosis (CA). The knowledge about other subtypes of restrictive cardiomyopathy (RCM) is scant. AIMS: This study aimed to elucidate the etiology and prognostic factors of RCM as well as assess cardiac biomarkers: high-sensitive troponin T (hs-TnT), growth differentiation factor-15 (GDF-15), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and soluble suppression of tumorigenicity 2, as mortality predictors in RCM. METHODS: We enrolled 36 RCM patients in our tertiary cardiac department. All patients were screened for CA. Genetic testing was performed in 17 patients without CA. RESULTS: Pathogenic or likely pathogenic gene variants were found in 86% of patients, including 5 novel variants. Twenty patients died, and 4 had a heart transplantation during the study. Median overall survival was 29 months (8-55). The univariate Cox models analysis indicated that systolic and diastolic blood pressure, GDF-15, hs-TnT, NT-proBNP, left ventricular stroke volume, the ratio of the transmitral early peak velocity (E) estimated by pulsed wave Doppler over the early mitral annulus velocity (e'), tricuspid annulus plane systolic excursion, early tricuspid valve annular systolic velocity, the presence of pulmonary hypertension, and pericardial effusion influenced survival (P <0.05). A worse prognosis was observed in patients with GDF-15 >1316 pg/ml, hs-TnT >42 ng/l, NT-proBNP >3383 pg/ml, and pericardial effusion >3.5 mm (Kaplan-Meier analysis, log-rank test, P <0.001). CONCLUSIONS: Genetic testing should be considered in every RCM patient where light-chain amyloidosis has been excluded. Survival remains poor regardless of etiology. Increased concentrations of GDF-15, hs-TNT, NT-proBNP, and pericardial effusion are associated with worse prognosis. Further studies are warranted.