Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Eur J Orthod ; 46(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38364324

ABSTRACT

OBJECTIVE: Mouth breathing as a result of nasal obstruction affects craniofacial growth and development. This study aimed to investigate the effects of unilateral nasal obstruction and its recovery, along with the role of nitric oxide (NO) in masticatory muscle physiology. MATERIALS AND METHODS: Forty-eight 4-week-old male rats were divided into control and experimental groups. The five experimental groups were subjected to left-sided nasal obstruction by suturing the external nostril, and the sutures were removed after 1, 3, 5, 7, or 9 weeks to allow for varying recovery periods. We assessed morphological changes in masseter, temporalis, and digastric muscle, by examining cross-sectional area (CSA) and myosin heavy chain (MHC) isoform composition of muscle fibers. Reverse transcription-quantitative real-time polymerase chain reaction to measure messenger RNA (mRNA) levels for tumor necrosis factor-α (TNF-α), glucose transporter 4 (GLUT4), and neuronal nitric oxide synthase (nNOS) were conducted. RESULTS: The SpO2, CSA, and fibers showing MHC-2b isoforms were significantly lower, while RT-PCR showed higher mRNA levels in TNF-α and nNOS, and a decrease in GLUT4 mRNA in the jaw-closing muscles in the long-term nasal obstruction groups than that in the control group. LIMITATIONS: The study findings should be interpreted cautiously because of the functional differences between rodents and humans in terms of respiratory mechanisms. CONCLUSIONS: Unilateral nasal obstruction affects the morphology and contractile characteristics of the rat masticatory muscles during development, with possible involvement of NO in muscle hypofunction. These changes may revert to baseline levels if the nasal obstruction is eliminated before puberty in rats.


Subject(s)
Nasal Obstruction , Humans , Rats , Male , Animals , Rats, Wistar , Tumor Necrosis Factor-alpha , Masticatory Muscles , Myosin Heavy Chains/genetics , RNA, Messenger
2.
J Bone Miner Metab ; 41(2): 171-181, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36859617

ABSTRACT

INTRODUCTION: Periostin, an extracellular matrix protein, plays an important role in osteogenesis and is also known to activate several signals that contribute to chondrogenesis. The absence of periostin in periostin knockout mice leads to several disorders such as craniosynostosis and periostitis. There are several splice variants with different roles in heart disease and myocardial infarction. However, little is known about each variant's role in chondrogenesis, followed by bone formation. Therefore, the aim of this study is to investigate the role of several variants in chondrogenesis differentiation and bone formation in the craniofacial region. Periostin splice variants included a full-length variant (Control), a variant lacking exon 17 (ΔEx17), a variant lacking exon 21 (ΔEx21), and another variant lacking both exon 17 and 21 ***(ΔEx17&21). MATERIALS AND METHODS: We used C56BL6/N mice (n = 6) for the wild type (Control)*** and the three variant type mice (n = 6 each) to identify the effect of each variant morphologically and histologically. Micro-computed tomography demonstrated a smaller craniofacial skeleton in ΔEx17s, ΔEx21s, and ΔEx17&21s compared to Controls, especially the mandibular bone. We, thus, focused on the mandibular condyle. RESULTS: The most distinctive histological observation was that each defected mouse appeared to have more hypertrophic chondrocytes than Controls. Real-time PCR demonstrated the differences among the group. Moreover, the lack of exon 17 or exon 21 in periostin leads to inadequate chondrocyte differentiation and presents in a diminutive craniofacial skeleton. DISCUSSION: Therefore, these findings suggested that each variant has a significant role in chondrocyte hypertrophy, leading to suppression of bone formation.


Subject(s)
Chondrocytes , Chondrogenesis , Animals , Mice , Bone and Bones , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrogenesis/genetics , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Mice, Knockout , Osteogenesis/genetics , X-Ray Microtomography
3.
J Hum Genet ; 66(8): 769-775, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33611338

ABSTRACT

Tooth agenesis is one of the most frequent congenital abnormalities found in the maxillofacial region. Oligodontia, a severe form of tooth agenesis, occurs as an isolated anomaly or as a syndromic feature. We performed whole exome sequencing analyses to identify causative mutation in a Japanese family with three affected individuals with non-syndromic oligodontia. After variant filtering procedures and validation by Sanger sequencing, we identified one missense mutation (c.668 C > T, p.Gly223Asp) in OPN3 at 1q43, encoding a photosensitive G-protein-coupled receptor (GPCR) expressed in various tissues including brain, liver, and adipose. This mutation was predicted to be pathogenic in silico and was not found in the public databases. We further examined 48 genetically unrelated cases by targeted sequencing of the OPN3 gene region and found one additional missense variant in this gene (c.768 C > T, p.Met256Ile) that was also predicted to be pathogenic. Localization of OPN3 protein by immunohistochemical analysis using mouse embryo revealed its specific expression in the tooth gems from bud to bell stages and their surrounding tissues. These results indicated that OPN3 was involved in non-syndromic oligodontia, which has made an anchoring point for clinical application including DNA diagnostics.


Subject(s)
Anodontia/genetics , Anodontia/metabolism , Genetic Predisposition to Disease , Rod Opsins/genetics , Rod Opsins/metabolism , Animals , Humans , Japan , Mice , Mutation, Missense , Pedigree , Phenotype , Sequence Analysis , Exome Sequencing
4.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31286565

ABSTRACT

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Subject(s)
Bone Resorption/prevention & control , Melatonin/therapeutic use , Space Flight , Animals , Bone Density/drug effects , Calcitonin/metabolism , Cell Differentiation/drug effects , Goldfish , Immunohistochemistry , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , RNA, Messenger/metabolism , Rats , Real-Time Polymerase Chain Reaction , Weightlessness/adverse effects
5.
J Periodontal Res ; 54(3): 278-285, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30474115

ABSTRACT

BACKGROUND AND OBJECTIVE: It is well known that recombinant human fibroblast growth factor-2 (rhFGF-2) signaling plays an important role in tissue repair and regeneration. rhFGF-2 strongly binds to acidic gelatin via ionic linkages and is gradually released upon gelatin decomposition. On the other hand, the linkage between rhFGF-2 and basic gelatin is so weak that most rhFGF-2 is rapidly released from basic gelatin by simple desorption. Gelatin/ß-tricalcium phosphate (ß-TCP) sponges, which comprise 50 wt% gelatin and 50 wt% ß-TCP in a cross-linked structure, can release rhFGF-2 gradually owing to their electrical features. In a previous study, we reported that new bone height in the test group using rhFGF-2 with acidic gelatin/ß-TCP sponges was significantly greater than that in the control group using acidic gelatin/ß-TCP sponges alone in a ridge augmentation model in dogs. However, whether these results depend on controlled release by the gelatin/ß-TCP sponges remains controversial. In this study, we evaluated the effects of controlled release by comparing acidic and basic gelatin/ß-TCP sponges with different isoelectric points (IEP) on ridge augmentation in dogs. MATERIALS AND METHODS: Twelve weeks after extraction of the maxillary second and third incisors of six dogs, critically sized saddle-type defects (8 mm length × 4 mm depth) were surgically created bilaterally 2 mm from the mesial side of the canine. Acidic gelatin/ß-TCP sponges (IEP 5.0) soaked with 0.3% rhFGF-2 were applied to the defect in the acidic group, whereas basic gelatin/ß-TCP sponges (IEP 9.0) soaked with 0.3% rhFGF-2 were applied to the defect in the basic group. Twelve weeks after surgery, biopsy specimens were obtained and subjected to microcomputed tomography (micro-CT) and histological analyses. RESULTS: New bone area detected by micro-CT analysis was significantly smaller in the basic group than in the acidic group. New bone height calculated by histologic sections was significantly lower in the basic group than in the acidic group. The total tissue height was lower in the basic group than in the acidic group. However, the differences between both sites were not significant. CONCLUSIONS: These findings suggest that in ridge augmentation of saddle-type defects, controlled release of rhFGF-2 induces notably more alveolar bone formation than does short-term application of rhFGF-2.


Subject(s)
Alveolar Ridge Augmentation , Bone Regeneration/drug effects , Calcium Phosphates/pharmacology , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 2/pharmacology , Gelatin Sponge, Absorbable/administration & dosage , Gelatin Sponge, Absorbable/pharmacology , Gelatin/administration & dosage , Gelatin/pharmacology , Isoelectric Point , Maxilla/physiology , Osteogenesis/drug effects , Alveolar Ridge Augmentation/methods , Animals , Calcium Phosphates/chemistry , Delayed-Action Preparations , Dogs , Fibroblast Growth Factor 2/chemistry , Gelatin/chemistry , Gelatin Sponge, Absorbable/chemistry , Male , Models, Animal , Protein Binding , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Time Factors
8.
Orig Life Evol Biosph ; 45(1-2): 225-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25794831

ABSTRACT

In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.


Subject(s)
Cosmic Dust/analysis , Exobiology/methods , Silica Gel/chemistry , Spacecraft
9.
Odontology ; 103(2): 136-42, 2015 May.
Article in English | MEDLINE | ID: mdl-24374984

ABSTRACT

Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.


Subject(s)
Fibroblast Growth Factors/metabolism , Odontogenesis/physiology , Animals , Cell Differentiation , Cell Proliferation , In Situ Hybridization , Mandible , Molar/physiology , Odontoblasts/physiology , Rats , Rats, Wistar , Receptors, Fibroblast Growth Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
10.
Orig Life Evol Biosph ; 44(1): 43-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25086872

ABSTRACT

We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.


Subject(s)
DNA, Bacterial/analysis , Deinococcus/isolation & purification , Extraterrestrial Environment , Spectrometry, Fluorescence , Benzothiazoles , Deinococcus/genetics , Diamines , Gels , Organic Chemicals , Particle Size , Quinolines , Silicon Dioxide/analysis
11.
Gels ; 10(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38667668

ABSTRACT

Raman spectroscopy is a non-destructive analytical technique for characterizing organic and inorganic materials with spatial resolution in the micrometer range. This makes it a method of choice for space-mission sample characterization, whether on return or in situ. To enhance its sensitivity, we use signal amplification via interaction with plasmonic silver-based colloids, which corresponds to surface-enhanced Raman scattering (SERS). In this study, we focus on the analysis of biomolecules of prebiotic interest on extraterrestrial dust trapped in silica aerogel, jointly with the Japanese Tanpopo mission. The aim is twofold: to prepare samples as close as possible to the real ones, and to optimize analysis by SERS for this specific context. Serpentinite was chosen as the inorganic matrix and adenine as the target biomolecule. The dust was projected at high velocity into the trapping aerogel and then mechanically extracted. A quantitative study shows effective detection even for adenine doping from a 5·10-9mol/L solution. After the dust has been expelled from the aerogel using a solvent, SERS mapping enables unambiguous adenine detection over the entire dust surface. This study shows the potential of SERS as a key technique not only for return samples, but also for upcoming new explorations.

12.
Nat Nanotechnol ; 18(9): 1060-1066, 2023 09.
Article in English | MEDLINE | ID: mdl-37400719

ABSTRACT

Extreme energy-dissipating materials are essential for a range of applications. The military and police force require ballistic armour to ensure the safety of their personnel, while the aerospace industry requires materials that enable the capture, preservation and study of hypervelocity projectiles. However, current industry standards display at least one inherent limitation, such as weight, breathability, stiffness, durability and failure to preserve captured projectiles. To resolve these limitations, we have turned to nature, using proteins that have evolved over millennia to enable effective energy dissipation. Specifically, a recombinant form of the mechanosensitive protein talin was incorporated into a monomeric unit and crosslinked, resulting in a talin shock-absorbing material (TSAM). When subjected to 1.5 km s-1 supersonic shots, TSAMs were shown to absorb the impact and capture and preserve the projectile.


Subject(s)
Sound , Talin
13.
J Electron Microsc (Tokyo) ; 60(1): 79-87, 2011.
Article in English | MEDLINE | ID: mdl-21030417

ABSTRACT

Mineralization of circumpulpal dentin has been interpreted in such a way that predentin matrix is abruptly converted to almost fully mineralized dentin at the mineralization front. A group of investigators pointed out the existence of intermediary layer along the mineralization front of rat incisor dentin and claimed that dentin mineralization is a rather transient process. Owing to a paucity of information, however, the entity of transient mineralization of dentin has remained elusive. Here we confirmed the existence of a lightly mineralized layer (LL) along the mineralization front of rat incisor dentin, recognizable by both light and electron microscopy, in routinely processed specimens. LL less than 3 µm thick was shown to be located along the mineralization front of crown-analog dentin and tapered out toward the root analog of the incisor. Electron microscopy revealed that mineral deposition first occurred in the non-collagenous matrix of LL and that mineralization of collagen fibers took place sometime later at the conventional mineralization front. Microscopic appearance of the mineral phase of LL varied considerably depending on the histological processing of ultrathin sections, thus explaining the inconsistent interpretation of dentin mineralization in previous studies. These data suggest that mineralization of circumpulpal dentin in rat incisors proceeds in a stepwise or a transient manner, initiated by crystal deposition in the non-collagenous matrix followed by massive mineral deposition in collagen fibers at the mineralization front. The thickness of LL where only the non-collagenous matrix is mineralized may vary in relation to differences in the local non-collagenous matrix and also the rate of collagen mineralization in the respective portions of circumpulpal dentin.


Subject(s)
Calcification, Physiologic , Dentin/metabolism , Histocytochemistry/methods , Incisor/metabolism , Microscopy, Electron/methods , Tooth Root/metabolism , Animals , Collagen/ultrastructure , Dental Restoration, Permanent , Rats , Rats, Sprague-Dawley , Rats, Wistar
14.
Astrobiology ; 21(12): 1461-1472, 2021 12.
Article in English | MEDLINE | ID: mdl-34449271

ABSTRACT

The Tanpopo experiment was the first Japanese astrobiology mission on board the International Space Station. It included exposure experiments of microbes and organic compounds as well as a capture experiment of hypervelocity impacting microparticles. We deployed three Exposure Panels, each consisting of 20 Exposure Units that contained microbes, organic compounds, an alanine UV dosimeter or an ionizing radiation dosimeter. The three Exposure Panels were situated on the zenith face of the Exposed Experiment Handrail Attachment Mechanism (ExHAM) that was pointing in zenith direction toward space, which was attached on a handrail of the Japanese Experiment Module (Kibo) Exposed Facility (JEM-EF) outside the International Space Station. The three Exposure Panels were one by one retrieved and returned to the ground after approximately 1, 2, and 3 years of exposure to the space environment. Capture Panels, each of which contained one or two blocks of amorphous silica aerogel, were exposed to collect hypervelocity impact microparticles. Possible captured particles may include micrometeoroids, human-made orbital debris, and natural terrestrial particles. Each year, Capture Panels containing from 11 to 12 aerogel blocks were attached to the three faces of the ExHAM (pointing to zenith, ram, and port); they remained in place for about 1 year and were then returned to the laboratory. This process was repeated three times, in total, during 2015-2018. Additional exposure of a Capture Panel facing ram was conducted between 2018 and 2019. Once the aerogel blocks were returned to the laboratory, they were encapsulated in dedicated transparent plastic cases and optically inspected by a specially designed microscopic system. Once located and recorded, hypervelocity impact signatures were excavated one by one and distributed for further detailed analyses. The apparatus, operation, and environmental factors of all the Tanpopo experiments are summarized in this article.


Subject(s)
Exobiology , Space Flight , Animals , Humans , Male , Organic Chemicals/analysis , Spacecraft
15.
Astrobiology ; 21(12): 1451-1460, 2021 12.
Article in English | MEDLINE | ID: mdl-34449275

ABSTRACT

The Tanpopo experiment was the first Japanese astrobiology mission on board the Japanese Experiment Module Exposed Facility on the International Space Station (ISS). The experiments were designed to address two important astrobiological topics, panspermia and the chemical evolution process toward the generation of life. These experiments also tested low-density aerogel and monitored the microdebris environment around low Earth orbit. The following six subthemes were identified to address these goals: (1) Capture of microbes in space: Estimation of the upper limit of microbe density in low Earth orbit; (2) Exposure of microbes in space: Estimation of the survival time course of microbes in the space environment; (3) Capture of cosmic dust on the ISS and analysis of organics: Detection of the possible presence of organic compounds in cosmic dust; (4) Alteration of organic compounds in space environments: Evaluation of decomposition time courses of organic compounds in space; (5) Space verification of the Tanpopo hyper-low-density aerogel: Durability and particle-capturing capability of aerogel; (6) Monitoring of the number of space debris: Time-dependent change in space debris environment. Subthemes 1 and 2 address the panspermia hypothesis, whereas 3 and 4 address the chemical evolution. The last two subthemes contribute to space technology development. Some of the results have been published previously or are included in this issue. This article summarizes the current status of the Tanpopo experiments.


Subject(s)
Exobiology , Space Flight , Cosmic Dust/analysis , Earth, Planet , Extraterrestrial Environment , Japan , Organic Chemicals/analysis , Spacecraft
16.
Calcif Tissue Int ; 86(2): 172-83, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20063091

ABSTRACT

Cement lines represent mineralized, extracellular matrix interfacial boundaries at which bone resorption by osteoclasts is followed by bone deposition by osteoblasts. To determine the contribution of cement lines to bone quality, the osteopetrotic c-Src mouse model-where cement lines accumulate and persist as a result of defective osteoclastic resorption-was used to investigate age-related changes in structural and mechanical properties of bone having long-lasting cement lines. Cement lines of osteopetrotic bones in c-Src knockout mice progressively mineralized with age up to the level that the entire matrix of cement lines was lost by EDTA decalcification. While it was anticipated that suppressed and abnormal remodeling, together with the accumulation of cement line interfaces, would lead to defective bone quality with advancing age of the mutant mice, unexpectedly, three-point bending tests of the long bones of 1-year-old c-Src-deficient mice indicated significantly elevated strength relative to age-matched wild-type bones despite the presence of numerous de novo microcracks. Among these microcracks in the c-Src bones, there was no sign of preferential propagation or arrest of microcracks along the cement lines in either fractured or nonfractured bones of old c-Src mice. These data indicate that cement lines are not the site of a potential internal failure of bone strength in aged c-Src osteopetrotic mice and that abundant and long-lasting cement lines in these osteopetrotic bones appear to have no negative impacts on the mechanical properties of this low-turnover bone despite their progressive hypermineralization (and thus potential brittleness) with age.


Subject(s)
Aging/metabolism , Bone Remodeling/genetics , Bone and Bones/metabolism , Osteopetrosis/metabolism , Protein-Tyrosine Kinases/metabolism , Aging/pathology , Animals , Bone Resorption/genetics , Bone and Bones/pathology , Bone and Bones/physiopathology , CSK Tyrosine-Protein Kinase , Calcification, Physiologic/genetics , Disease Models, Animal , Disease Progression , Extracellular Matrix/metabolism , Fractures, Bone/genetics , Fractures, Bone/metabolism , Fractures, Bone/physiopathology , Mice , Mice, Knockout , Osteoclasts/metabolism , Osteopetrosis/genetics , Osteopetrosis/physiopathology , Protein-Tyrosine Kinases/genetics , Tensile Strength/physiology , Weight-Bearing/physiology , src-Family Kinases
17.
Arch Histol Cytol ; 73(3): 139-48, 2010.
Article in English | MEDLINE | ID: mdl-22572181

ABSTRACT

Ectodermal contribution to the induction of pharyngeal teeth that form in the endodermal territory of the oropharyngeal cavity in some teleost fishes has been a matter of considerable debate. To determine the role of ectodermal cell signaling in scale and tooth formation and thereby to gain insights in evolutionary origin of teeth, we analyzed scales and teeth in rs-3 medaka mutants characterized by reduced scale numbers due to aberrant splicing of the ectodysplasin-A receptor (edar). Current data show that, in addition to a loss of scales (83% reduction), a drastic loss of teeth occurred in both oral (43.5% reduction) and pharyngeal (73.5% reduction) dentitions in rs-3. The remaining scales of rs-3 were irregular in shape and nearly 3 times larger in size relative to those of the wild-type. In contrast, there was no abnormality in size and shape in the remaining teeth of rs-3. In wild-type medaka embryos, there was a direct contact between the surface ectoderm and rostral endoderm in pharyngeal regions before the onset of pharyngeal tooth formation. However, there was no sign of ectodermal cell migration in the pharyngeal endoderm and hence no direct evidence of any ectodermal contribution to pharyngeal odontogenesis. These data suggest differential roles for Eda-Edar signaling in the induction and growth of scales and teeth and support the intrinsic odontogenic competence of the rostral endoderm in medaka.


Subject(s)
Animal Structures/anatomy & histology , Biological Evolution , Oryzias/anatomy & histology , Oryzias/genetics , Pharynx/anatomy & histology , Receptors, Ectodysplasin/genetics , Tooth/anatomy & histology , Animals , Ectoderm/anatomy & histology , Ectoderm/ultrastructure , Embryo, Nonmammalian/ultrastructure , Endoderm/anatomy & histology , Endoderm/ultrastructure , Female , Male , Mutation/genetics , Oryzias/embryology , Pharynx/diagnostic imaging , Phenotype , Tomography, X-Ray Computed , Tooth/diagnostic imaging
18.
Arch Histol Cytol ; 72(3): 187-98, 2009.
Article in English | MEDLINE | ID: mdl-20513981

ABSTRACT

The enamel organ engaged in enamel matrix formation in tooth germs comprises four different cell types: the ameloblasts, the cells of the stratum intermedium, stellate reticulum, and the outer enamel epithelium, each characterized by distinct structural features. In ordinary primary cultures of tooth-derived cells, these cells generally become flat in profile and hardly regain their original profiles comparable to those in vivo, even under conditions that can induce the expression of functional markers from these cells. To overcome this limitation inherent to the cell culture of tooth-derived cells, we introduced a novel co-culture method, a "three-dimensional and layered (TDL) culture", a three-dimensional (3D) culture of dental pulp-derived cells dispersed in type I collagen gel combined with a layered culture of enamel epithelial cells seeded on top of the gel to establish thereby a culture condition where the functional tooth-derived cells regain their original structures and spatial arrangements. We subjected the TDL gels thus prepared to floating cultures and found that, in the layered epithelial cells, those facing the 3D gel became cuboidal/short columnar in shape, showed cell polarity and well-developed intercellular junctions, had PAS positive material in their cytoplasm, and expressed a distinct immunoreactivity for cyotokeratin 14 and amelogenins. Pulpal cells in the gel displayed a strong ALP activity throughout the 3D gel. The current observations have clearly shown that the structural and functional features reminiscent of early secretory ameloblasts could be restored in the enamel organ-derived cells in a TDL culture.


Subject(s)
Ameloblasts/cytology , Amelogenesis , Coculture Techniques/methods , Dental Pulp/cytology , Animals , Cells, Cultured , Rats , Rats, Wistar
19.
Life (Basel) ; 9(4)2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31717814

ABSTRACT

Space missions using probes to return dust samples are becoming more frequent. Dust collectors made of silica aerogel blocks are used to trap and bring back extraterrestrial particles for analysis. In this work, we show that it is possible to detect traces of adenine using surface-enhanced Raman spectroscopy (SERS). The method was first optimized using adenine deposition on glass slides and in glass wells. After this preliminary step, adenine solution was injected into the silica aerogel. Finally, gaseous adenine was successfully trapped in the aerogel. The presence of traces of adenine was monitored by SERS through its characteristic bands at 732, 1323, and 1458 cm-1 after the addition of the silver Creighton colloid. Such a method can be extended in the frame of Tanpopo missions for studying the interplanetary transfer of prebiotic organic compounds of biological interest.

20.
J Med Dent Sci ; 55(3-4): 255-65, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19697513

ABSTRACT

Tissue-nonspecific alkaline phosphatase (TNSALP) and Ca-ATPase are known to play roles in bone mineralization, but how these enzymes contribute to appositional mineralization has been illusive. Here we examined the active sites of these enzymes in appositional mineralization using the bones of young rats being administered with 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 5 days. The doses of HEBP totally abolished mineralization of newly formed bone matrix except in matrix vesicles (MVs), and hence allowed precise localization of MVs and phosphatase reactions within non-mineralized extracellular matrix. Intense TNSALP and ATPase reactions were confirmed along the limited portions of osteoblast membranes where intimate cell-cell contacts were maintained. Diffuse reactions of these enzymes were throughout the osteoid implicating efflux of TNSALP and ATPase molecules into extracellular matrix from the osteoblast membranes. Phosphatase reactions associated with MVs varied both in intensity and location among the individual vesicles; newly formed MVs were almost free of reactions but appeared to gain those activities later in the osteoid. These data suggest that TNSALP and ATPase are released from the osteoblast membrane and later integrated into MVs within the osteoid. The osteoblasts may thus regulate appositional mineralization of bone from a distance at least in part by providing phosphatases via MVs.


Subject(s)
Alkaline Phosphatase/metabolism , Bone Density Conservation Agents/pharmacology , Calcification, Physiologic/physiology , Calcium-Transporting ATPases/metabolism , Etidronic Acid/pharmacology , Alkaline Phosphatase/ultrastructure , Animals , Bone Matrix/enzymology , Bone Matrix/ultrastructure , Calcification, Physiologic/drug effects , Calcium-Transporting ATPases/ultrastructure , Cell Communication/drug effects , Cell Membrane/enzymology , Cell Membrane/ultrastructure , Cytoplasmic Vesicles/enzymology , Cytoplasmic Vesicles/ultrastructure , Extracellular Matrix/enzymology , Extracellular Matrix/ultrastructure , Female , Golgi Apparatus/enzymology , Golgi Apparatus/ultrastructure , Histocytochemistry , Lysosomes/enzymology , Lysosomes/ultrastructure , Osteoblasts/enzymology , Osteoblasts/ultrastructure , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL