Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 98(5): e0169323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563763

ABSTRACT

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Subject(s)
COVID-19 Vaccines , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Disease Models, Animal , Genetic Vectors , Measles Vaccine/immunology , Measles Vaccine/genetics , Measles virus/immunology , Measles virus/genetics , Mice, Inbred BALB C , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
2.
Proc Natl Acad Sci U S A ; 115(52): E12265-E12274, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30541888

ABSTRACT

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.


Subject(s)
Adrenal Cortex/enzymology , Cyclic AMP-Dependent Protein Kinase RIbeta Subunit/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Signal Transduction , Adrenal Cortex/metabolism , Animals , Cell Differentiation , Cyclic AMP-Dependent Protein Kinase RIbeta Subunit/genetics , Cyclic Nucleotide Phosphodiesterases, Type 1/genetics , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Steroids/metabolism , Zona Fasciculata/cytology , Zona Fasciculata/enzymology , Zona Fasciculata/metabolism , Zona Glomerulosa/cytology , Zona Glomerulosa/enzymology , Zona Glomerulosa/metabolism
3.
Br J Cancer ; 121(5): 384-394, 2019 08.
Article in English | MEDLINE | ID: mdl-31363169

ABSTRACT

BACKGROUND: EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. METHODS: We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. RESULTS: We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. CONCLUSIONS: Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , E2F1 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin Immunoprecipitation , Computational Biology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Humans , Indoles/pharmacology , Mice, Knockout , Multivariate Analysis , Proportional Hazards Models , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/genetics , Securin/genetics
4.
Hum Mol Genet ; 25(13): 2789-2800, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27149985

ABSTRACT

Adrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/ß-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas. Here, we have conducted a study of publicly available gene expression data from three cohorts of ACC patients to identify relevant alterations. Our data show that the histone methyltransferase EZH2 is overexpressed in ACC in the three cohorts. This overexpression is the result of deregulated P53/RB/E2F pathway activity and is associated with increased proliferation and poorer prognosis in patients. Inhibition of EZH2 by RNA interference or pharmacological treatment with DZNep inhibits cellular growth, wound healing and clonogenic growth and induces apoptosis of H295R cells in culture. Further growth inhibition is obtained when DZNep is combined with mitotane, the gold-standard treatment for ACC. Altogether, these observations suggest that overexpression of EZH2 is associated with aggressive progression and may constitute an interesting therapeutic target in the context of ACC.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Adrenal Cortex Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Databases, Nucleic Acid , Disease Progression , Gene Expression , Genetic Predisposition to Disease/genetics , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Transgenic , RNA Interference , Risk Factors , Wnt Signaling Pathway , beta Catenin/genetics
5.
EBioMedicine ; 75: 103810, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35045362

ABSTRACT

BACKGROUND: V591 (TMV-083) is a live recombinant measles vector-based vaccine candidate expressing a pre-fusion stabilized SARS-CoV-2 spike protein. METHODS: We performed a randomized, placebo-controlled Phase I trial with an unblinded dose escalation and a double-blind treatment phase at 2 sites in France and Belgium to evaluate the safety and immunogenicity of V591. Ninety healthy SARS-CoV-2 sero-negative adults (18-55 years of age) were randomized into 3 cohorts, each comprising 24 vaccinees and 6 placebo recipients. Participants received two intramuscular injections of a low dose vaccine (1 × 105 median Tissue Culture Infectious Dose [TCID50]), one or two injections of a high dose vaccine (1 × 106 TCID50), or placebo with a 28 day interval. Safety was assessed by solicited and unsolicited adverse events. Immunogenicity was measured by SARS-CoV-2 spike protein-binding antibodies, neutralizing antibodies, spike-specific T cell responses, and anti-measles antibodies. ClinicalTrials.gov, NCT04497298. FINDINGS: Between Aug 10 and Oct 13, 2020, 148 volunteers were screened of whom 90 were randomized. V591 showed a good safety profile at both dose levels. No serious adverse events were reported. At least one treatment-related adverse event was reported by 15 (20.8%) participants receiving V591 vs. 6 (33.3%) of participants receiving placebo. Eighty-one percent of participants receiving two injections of V591 developed spike-binding antibodies after the second injection. However, neutralizing antibodies were detectable on day 56 only in 17% of participants receiving the low dose and 61% receiving the high dose (2 injections). Spike-specific T cell responses were not detected. Pre-existing anti-measles immunity had a statistically significant impact on the immune response to V591, which was in contrast to previous results with the measles vector-based chikungunya vaccine. INTERPRETATION: While V591 was generally well tolerated, the immunogenicity was not sufficient to support further development. FUNDING: Themis Bioscience GmbH, a subsidiary of Merck & Co. Inc., Kenilworth, NJ, USA; Coalition for Epidemic Preparedness Innovations (CEPI).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , Genetic Vectors , Immunogenicity, Vaccine , Measles virus , SARS-CoV-2/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics
6.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33357418

ABSTRACT

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Subject(s)
Administration, Intranasal/methods , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Cricetinae , Female , Genetic Vectors , Immunity, Mucosal , Immunization, Secondary , Immunoglobulin A/immunology , Lentivirus/genetics , Lentivirus/immunology , Male , Mice , Models, Animal , Respiratory System/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
7.
Nat Commun ; 7: 12751, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624192

ABSTRACT

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates ß-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


Subject(s)
Adrenal Gland Neoplasms/etiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Wnt Signaling Pathway , Zona Fasciculata/metabolism , Zona Glomerulosa/metabolism , Animals , Carcinogenesis , Cell Differentiation , Cell Line, Tumor , Female , Humans , Mice , Phosphorylation , Zona Fasciculata/cytology , Zona Glomerulosa/cytology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL