Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Publication year range
1.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474906

ABSTRACT

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Subject(s)
Medulloblastoma/blood supply , Medulloblastoma/pathology , Meningeal Neoplasms/blood supply , Meningeal Neoplasms/secondary , Allografts , Animals , Cell Line, Tumor , Chemokine CCL2/metabolism , Chromosomes, Human, Pair 10/genetics , Female , Humans , Male , Medulloblastoma/genetics , Mice, SCID , Neoplastic Cells, Circulating , Parabiosis
2.
Nature ; 630(8017): 752-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867045

ABSTRACT

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Subject(s)
DNA Damage , DNA Mismatch Repair , Neoplasms , Humans , DNA Mismatch Repair/genetics , Deamination , Neoplasms/genetics , Mutation , Sequence Analysis, DNA , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Base Pair Mismatch/genetics , Cytosine/metabolism , Single Molecule Imaging/methods , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , DNA, Single-Stranded/genetics , DNA Replication/genetics , Proteins
4.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265402

ABSTRACT

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Subject(s)
Brain Neoplasms/genetics , Gene Rearrangement , Medulloblastoma/genetics , Tumor Suppressor Protein p53/genetics , Animals , Child , Chromosome Aberrations , DNA Copy Number Variations , DNA Mutational Analysis , Disease Models, Animal , Humans , Leukemia, Myeloid, Acute/genetics , Li-Fraumeni Syndrome/physiopathology , Mice , Middle Aged
5.
N Engl J Med ; 389(12): 1108-1120, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37733309

ABSTRACT

BACKGROUND: Detection of the BRAF V600E mutation in pediatric low-grade glioma has been associated with a lower response to standard chemotherapy. In previous trials, dabrafenib (both as monotherapy and in combination with trametinib) has shown efficacy in recurrent pediatric low-grade glioma with BRAF V600 mutations, findings that warrant further evaluation of this combination as first-line therapy. METHODS: In this phase 2 trial, patients with pediatric low-grade glioma with BRAF V600 mutations who were scheduled to receive first-line therapy were randomly assigned in a 2:1 ratio to receive dabrafenib plus trametinib or standard chemotherapy (carboplatin plus vincristine). The primary outcome was the independently assessed overall response (complete or partial response) according to the Response Assessment in Neuro-Oncology criteria. Also assessed were the clinical benefit (complete or partial response or stable disease for ≥24 weeks) and progression-free survival. RESULTS: A total of 110 patients underwent randomization (73 to receive dabrafenib plus trametinib and 37 to receive standard chemotherapy). At a median follow-up of 18.9 months, an overall response occurred in 47% of the patients treated with dabrafenib plus trametinib and in 11% of those treated with chemotherapy (risk ratio, 4.31; 95% confidence interval [CI], 1.7 to 11.2; P<0.001). Clinical benefit was observed in 86% of the patients receiving dabrafenib plus trametinib and in 46% receiving chemotherapy (risk ratio, 1.88; 95% CI, 1.3 to 2.7). The median progression-free survival was significantly longer with dabrafenib plus trametinib than with chemotherapy (20.1 months vs. 7.4 months; hazard ratio, 0.31; 95% CI, 0.17 to 0.55; P<0.001). Grade 3 or higher adverse events occurred in 47% of the patients receiving dabrafenib plus trametinib and in 94% of those receiving chemotherapy. CONCLUSIONS: Among pediatric patients with low-grade glioma with BRAF V600 mutations, dabrafenib plus trametinib resulted in significantly more responses, longer progression-free survival, and a better safety profile than standard chemotherapy as first-line therapy. (Funded by Novartis; ClinicalTrials.gov number, NCT02684058.).


Subject(s)
Antineoplastic Agents , Glioma , Proto-Oncogene Proteins B-raf , Child , Humans , Glioma/drug therapy , Glioma/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Antineoplastic Agents/therapeutic use
6.
Radiology ; 310(2): e230777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349246

ABSTRACT

Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Glioma , Medulloblastoma , Female , Male , Humans , Adolescent , Young Adult , Child , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , World Health Organization
7.
Clin Chem ; 70(5): 737-746, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38531023

ABSTRACT

BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) is a rare and extraordinarily penetrant childhood-onset cancer predisposition syndrome. Genetic diagnosis is often hampered by the identification of mismatch repair (MMR) variants of unknown significance and difficulties in PMS2 analysis, the most frequently mutated gene in CMMRD. We present the validation of a robust functional tool for CMMRD diagnosis and the characterization of microsatellite instability (MSI) patterns in blood and tumors. METHODS: The highly sensitive assessment of MSI (hs-MSI) was tested on a blinded cohort of 66 blood samples and 24 CMMRD tumor samples. Hs-MSI scores were compared with low-pass genomic instability scores (LOGIC/MMRDness). The correlation of hs-MSI scores in blood with age of cancer onset and the distribution of insertion-deletion (indel) variants in microsatellites were analyzed in a series of 169 individuals (n = 68 CMMRD, n = 124 non-CMMRD). RESULTS: Hs-MSI achieved high accuracy in the identification of CMMRD in blood (sensitivity 98.5% and specificity 100%) and detected MSI in CMMRD-associated tumors. Hs-MSI had a strong positive correlation with whole low-pass genomic instability LOGIC scores (r = 0.89, P = 2.2e-15 in blood and r = 0.82, P = 7e-3 in tumors). Indel distribution identified PMS2 pathogenic variant (PV) carriers from other biallelic MMR gene PV carriers with an accuracy of 0.997. Higher hs-MSI scores correlated with younger age at diagnosis of the first tumor (r = -0.43, P = 0.011). CONCLUSIONS: Our study confirms the accuracy of the hs-MSI assay as ancillary testing for CMMRD diagnosis, which can also characterize MSI patterns in CMMRD-associated cancers. Hs-MSI is a powerful tool to pinpoint PMS2 as the affected germline gene and thus potentially personalize cancer risk.


Subject(s)
Germ-Line Mutation , Microsatellite Instability , Mismatch Repair Endonuclease PMS2 , Humans , Mismatch Repair Endonuclease PMS2/genetics , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis , Child , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Female , Male , DNA Mismatch Repair/genetics , Child, Preschool , Adolescent , Alleles
8.
J Neurooncol ; 167(3): 447-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38443693

ABSTRACT

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Subject(s)
Neurofibromatosis 1 , Neuropsychological Tests , Pyridones , Pyrimidinones , Humans , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/administration & dosage , Male , Female , Adolescent , Child , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Neurofibromatosis 1/psychology , Young Adult , Child, Preschool , Glioma/drug therapy , Glioma/psychology , Glioma/complications , Brain Neoplasms/drug therapy , Brain Neoplasms/psychology , Brain Neoplasms/complications , Adult , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects
9.
Eur Radiol ; 34(4): 2772-2781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37803212

ABSTRACT

OBJECTIVES: Currently, the BRAF status of pediatric low-grade glioma (pLGG) patients is determined through a biopsy. We established a nomogram to predict BRAF status non-invasively using clinical and radiomic factors. Additionally, we assessed an advanced thresholding method to provide only high-confidence predictions for the molecular subtype. Finally, we tested whether radiomic features provide additional predictive information for this classification task, beyond that which is embedded in the location of the tumor. METHODS: Random forest (RF) models were trained on radiomic and clinical features both separately and together, to evaluate the utility of each feature set. Instead of using the traditional single threshold technique to convert the model outputs to class predictions, we implemented a double threshold mechanism that accounted for uncertainty. Additionally, a linear model was trained and depicted graphically as a nomogram. RESULTS: The combined RF (AUC: 0.925) outperformed the RFs trained on radiomic (AUC: 0.863) or clinical (AUC: 0.889) features alone. The linear model had a comparable AUC (0.916), despite its lower complexity. Traditional thresholding produced an accuracy of 84.5%, while the double threshold approach yielded 92.2% accuracy on the 80.7% of patients with the highest confidence predictions. CONCLUSION: Models that included radiomic features outperformed, underscoring their importance for the prediction of BRAF status. A linear model performed similarly to RF but with the added benefit that it can be visualized as a nomogram, improving the explainability of the model. The double threshold technique was able to identify uncertain predictions, enhancing the clinical utility of the model. CLINICAL RELEVANCE STATEMENT: Radiomic features and tumor location are both predictive of BRAF status in pLGG patients. We show that they contain complementary information and depict the optimal model as a nomogram, which can be used as a non-invasive alternative to biopsy. KEY POINTS: • Radiomic features provide additional predictive information for the determination of the molecular subtype of pediatric low-grade gliomas patients, beyond what is embedded in the location of the tumor, which has an established relationship with genetic status. • An advanced thresholding method can help to distinguish cases where machine learning models have a high chance of being (in)correct, improving the utility of these models. • A simple linear model performs similarly to a more powerful random forest model at classifying the molecular subtype of pediatric low-grade gliomas but has the added benefit that it can be converted into a nomogram, which may facilitate clinical implementation by improving the explainability of the model.


Subject(s)
Brain Neoplasms , Glioma , Humans , Child , Proto-Oncogene Proteins B-raf/genetics , Brain Neoplasms/pathology , Radiomics , Retrospective Studies , Glioma/pathology
10.
Childs Nerv Syst ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761264

ABSTRACT

Pediatric-type low-grade glioma (PLGG) encompasses a heterogeneous group of WHO grade 1 or 2 tumors and is the most common central nervous system tumor found in children. PLGG extends beyond pediatrics, into adolescents and young adults (AYA, ages 15-40). PLGG represents 25% of all gliomas diagnosed in AYA with differences in tumor location and molecular alterations compared to children, resulting in improved outcome for AYAs. Long-term outcome is excellent, though patients may suffer significant morbidity depending on tumor location. There are differences in treatment practices with radiation used to treat PLGG in AYAs more often than in children. Most PLGG in AYA harbor an alteration in the RAS/MAPK pathway, with limited insight into response to targeted therapy in this age group. This review discusses the epidemiology, current therapeutic approaches, and challenges in the management of PLGG in AYA.

11.
Childs Nerv Syst ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795167

ABSTRACT

INTODUCTION: Diffuse leptomeningeal glioneuronal tumors (DLGNTs) pose a rare and challenging entity within pediatric central nervous system neoplasms. Despite their rarity, DLGNTs exhibit complex clinical presentations and unique molecular characteristics, necessitating a deeper understanding of their diagnostic and therapeutic nuances. METHODS: This review synthesizes contemporary literature on DLGNT, encompassing epidemiology, clinical manifestations, pathological features, treatment strategies, prognostic markers, and future research directions. To compile the existing body of knowledge on DLGNT, a comprehensive search of relevant databases was conducted. RESULTS: DLGNT primarily affects pediatric populations but can manifest across all age groups. Its diagnosis is confounded by nonspecific clinical presentations and overlapping radiological features with other CNS neoplasms. Magnetic resonance imaging (MRI) serves as a cornerstone for DLGNT diagnosis, revealing characteristic leptomeningeal enhancement and intraparenchymal involvement. Histologically, DLGNT presents with low to moderate cellularity and exhibits molecular alterations in the MAPK/ERK signalling pathway. Optimal management of DLGNT necessitates a multidisciplinary approach encompassing surgical resection, chemotherapy, radiotherapy, and emerging targeted therapies directed against specific genetic alterations. Prognostication remains challenging, with factors such as age at diagnosis, histological subtypes, and genetic alterations influencing disease progression and treatment response. Long-term survival data are limited, underscoring the need for collaborative research efforts. CONCLUSION: Advancements in molecular profiling, targeted therapies, and international collaborations hold promise for improving DLGNT outcomes. Harnessing the collective expertise of clinicians, researchers, and patient advocates, can advance the field of DLGNT research and optimize patient care paradigms.

12.
Can Assoc Radiol J ; 75(1): 153-160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37401906

ABSTRACT

Purpose: MRI-based radiomics models can predict genetic markers in pediatric low-grade glioma (pLGG). These models usually require tumour segmentation, which is tedious and time consuming if done manually. We propose a deep learning (DL) model to automate tumour segmentation and build an end-to-end radiomics-based pipeline for pLGG classification. Methods: The proposed architecture is a 2-step U-Net based DL network. The first U-Net is trained on downsampled images to locate the tumour. The second U-Net is trained using image patches centred around the located tumour to produce more refined segmentations. The segmented tumour is then fed into a radiomics-based model to predict the genetic marker of the tumour. Results: Our segmentation model achieved a correlation value of over 80% for all volume-related radiomic features and an average Dice score of .795 in test cases. Feeding the auto-segmentation results into a radiomics model resulted in a mean area under the ROC curve (AUC) of .843, with 95% confidence interval (CI) [.78-.906] and .730, with 95% CI [.671-.789] on the test set for 2-class (BRAF V600E mutation BRAF fusion) and 3-class (BRAF V600E mutation BRAF fusion and Other) classification, respectively. This result was comparable to the AUC of .874, 95% CI [.829-.919] and .758, 95% CI [.724-.792] for the radiomics model trained and tested on the manual segmentations in 2-class and 3-class classification scenarios, respectively. Conclusion: The proposed end-to-end pipeline for pLGG segmentation and classification produced results comparable to manual segmentation when it was used for a radiomics-based genetic marker prediction model.


Subject(s)
Glioma , Proto-Oncogene Proteins B-raf , Humans , Child , Genetic Markers , Glioma/pathology , Magnetic Resonance Imaging/methods , Area Under Curve
13.
Hum Genet ; 142(4): 563-576, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36790526

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) is an aggressive and highly penetrant cancer predisposition syndrome. Because of its variable clinical presentation and phenotypical overlap with neurofibromatosis, timely diagnosis remains challenging, especially in countries with limited resources. Since current tests are either difficult to implement or interpret or both we used a novel and relatively inexpensive functional genomic assay (LOGIC) which has been recently reported to have high sensitivity and specificity in diagnosing CMMRD. Here we report the clinical and molecular characteristics of nine patients diagnosed with cancer and suspected to have CMMRD and highlight the challenges with variant interpretation and immunohistochemical analysis that led to an uncertain interpretation of genetic findings in 6 of the 9 patients. Using LOGIC, we were able to confirm the diagnosis of CMMRD in 7 and likely exclude it in 2 patients, resolving ambiguous result interpretation. LOGIC also enabled predictive testing of asymptomatic siblings for early diagnosis and implementation of surveillance. This study highlights the varied manifestations and practical limitations of current diagnostic criteria for CMMRD, and the importance of international collaboration for implementing robust and low-cost functional assays for resolving diagnostic challenges.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Humans , Lebanon , Brain Neoplasms/diagnosis , Colorectal Neoplasms/diagnosis , Phenotype , Genomics , Genotype
14.
J Med Genet ; 59(4): 318-327, 2022 04.
Article in English | MEDLINE | ID: mdl-33622763

ABSTRACT

BACKGROUND: Constitutional mismatch repair deficiency syndrome (CMMRD) is the most aggressive cancer predisposition syndrome associated with multiorgan cancers, often presenting in childhood. There is variability in age and presentation of cancers and benign manifestations mimicking neurofibromatosis type 1. Genetic testing may not be informative and is complicated by pseudogenes associated with the most commonly associated gene, PMS2. To date, no diagnostic criteria exist. Since surveillance and immune-based therapies are available, establishing a CMMRD diagnosis is key to improve survival. METHODS: In order to establish a robust diagnostic path, a multidisciplinary international working group, with representation from the two largest consortia (International Replication Repair Deficiency (IRRD) consortium and European Consortium Care for CMMRD (C4CMMRD)), was formed to establish diagnostic criteria based on expertise, literature review and consensus. RESULTS: The working group established seven diagnostic criteria for the diagnosis of CMMRD, including four definitive criteria (strong evidence) and three likely diagnostic criteria (moderate evidence). All criteria warrant CMMRD surveillance. The criteria incorporate germline mismatch repair results, ancillary tests and clinical manifestation to determine a diagnosis. Hallmark cancers for CMMRD were defined by the working group after extensive literature review and consultation with the IRRD and C4CMMRD consortia. CONCLUSIONS: This position paper summarises the evidence and rationale to provide specific guidelines for CMMRD diagnosis, which necessitates appropriate surveillance and treatment.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Consensus , DNA Mismatch Repair/genetics , Humans , Mismatch Repair Endonuclease PMS2/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy
15.
Pak J Med Sci ; 39(5): 1548-1554, 2023.
Article in English | MEDLINE | ID: mdl-37680835

ABSTRACT

Pediatric high-grade glioma (pHGG) is highly malignant central nervous system tumor and constitute 10% of the pediatric gliomas. Effective treatment needs a functioning multi-disciplinary team including pediatric neuro oncologist, neurosurgeon, neuroradiologist, neuropathologist and radiation oncologist. Despite surgical resection, radiotherapy and chemotherapy, most HGG will recur resulting in early death. A significant proportion of HGG occurs in context of cancer predisposition syndromes like Constitutional Mismatch Repair Deficiency (CMMRD) also known as Biallelic Mismatch Repair Deficiency (bMMRD) characterized by high mutational burden. The incidence of HGG with CMMRD is one per million patients. bMMRD is caused by homozygous germline mutations in one of the four Mis Match Repair (MMR) genes (PMS2, MLH1, MSH2, and MSH6). The use of TMZ is now avoided in CMMRD related HGG due to its limited response and known ability to increase the accumulation of somatic mutations in these patients, increasing the risk of secondary tumors. HGG should be managed under the care of multidisciplinary team to receive optimum treatment. This is particularly important for low middle-income countries (LMIC) with limited resources like Pakistan.

16.
Pediatr Blood Cancer ; 69(11): e29887, 2022 11.
Article in English | MEDLINE | ID: mdl-35856658

ABSTRACT

INTRODUCTION: Brain tumors are the most common solid neoplasms and the second most common malignancy in the pediatric age group. Due to the complexity of their management, pediatric central nervous system (CNS) tumors are not a priority in low- and middle-income countries (LMICs). METHODS: In an attempt to improve the survival rate and overall care, we introduced a dedicated pediatric neuro-oncology service in our institute and evaluated its impact by dividing the pre- and post-era into two cohorts and comparing them: 1998-2013 (16 years: cohort A) and 2014-2019 (6 years: cohort B, after the start of dedicated neuro-oncology services). RESULTS: We observed that after the implementation of a proper neuro-oncology service, the proportion of patients treated with curative intent increased, and survival improved in cohort B. The patient volume also increased from 15.5 per year in cohort A to 44.8 per year in cohort B. The percentage of children given radiation therapy also increased significantly, while the proportion of children treated with chemotherapy remained stable. CONCLUSION: A dedicated multidisciplinary team trained and knowledgeable in the specialty of pediatric neuro-oncology can enhance and improve outcomes, and supportive care and help can provide good quality of life to children and their families with brain neoplasms.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Brain Neoplasms/therapy , Central Nervous System Neoplasms/therapy , Child , Developing Countries , Humans , Pakistan , Quality of Life
17.
Pediatr Blood Cancer ; 69(9): e29726, 2022 09.
Article in English | MEDLINE | ID: mdl-35484912

ABSTRACT

BACKGROUND: Low- and middle-income countries sustain the majority of pediatric cancer burden, with significantly poorer survival rates compared to high-income countries. Collaboration between institutions in low- and middle-income countries and high-income countries is one of the ways to improve cancer outcomes. METHODS: Patient characteristics and effects of a pediatric neuro-oncology twinning program between the Hospital for Sick Children in Toronto, Canada and several hospitals in Karachi, Pakistan over 7 years are described in this article. RESULTS: A total of 460 patients were included in the study. The most common primary central nervous system tumors were low-grade gliomas (26.7%), followed by medulloblastomas (18%), high-grade gliomas (15%), ependymomas (11%), and craniopharyngiomas (11.7%). Changes to the proposed management plans were made in consultation with expert physicians from the Hospital for Sick Children in Toronto, Canada. On average, 24% of the discussed cases required a change in the original management plan over the course of the twinning program. However, a decreasing trend in change in management plans was observed, from 36% during the first 3.5 years to 16% in the last 3 years. This program also led to the launch of a national pediatric neuro-oncology telemedicine program in Pakistan. CONCLUSIONS: Multidisciplinary and collaborative efforts by experts from across the world have aided in the correct diagnosis and treatment of children with brain tumors and helped establish local treatment protocols. This experience may be a model for other low- and middle-income countries that are planning on creating similar programs.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Brain Neoplasms/therapy , Canada , Child , Developing Countries , Ecosystem , Humans , Pakistan
18.
BMC Pediatr ; 22(1): 13, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34980048

ABSTRACT

BACKGROUND: Treatment personalization via tumor molecular testing holds promise for improving outcomes for patients with pediatric low-grade glioma (PLGG). We evaluate the health economic impact of employing tumor molecular testing to guide treatment for patients diagnosed with PLGG, particularly the avoidance of radiation therapy (RT) for patients with BRAF-fusion. METHODS: We performed a model-based cost-utility analysis comparing two strategies: molecular testing to determine BRAF fusion status at diagnosis against no molecular testing. We developed a microsimulation to model the lifetime health and cost outcomes (in quality-adjusted life years (QALYs) and 2018 CAD, respectively) for a simulated cohort of 100,000 patients newly diagnosed with PLGG after their initial surgery. RESULTS: The life expectancy after diagnosis for individuals who did not receive molecular testing was 39.01 (95% Confidence Intervals (CI): 32.94;44.38) years and 40.08 (95% CI: 33.19;45.76) years for those who received testing. Our findings indicate that patients who received molecular testing at diagnosis experienced a 0.38 (95% CI: 0.08;0.77) gain in QALYs and $1384 (95% CI: $-3486; $1204) reduction in costs over their lifetime. Cost and QALY benefits were driven primarily by the avoidance of long-term adverse events (stroke, secondary neoplasms) associated with unnecessary use of radiation. CONCLUSIONS: We demonstrate the clinical benefit and cost-effectiveness of molecular testing in guiding the decision to provide RT in PLGG. While our results do not consider the impact of targeted therapies, this work is an example of the value of simulation modeling in assessing the long-term costs and benefits of precision oncology interventions for childhood cancer, which can aid decision-making about health system reimbursement.


Subject(s)
Glioma , Proto-Oncogene Proteins B-raf , Child , Cost-Benefit Analysis , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Humans , Molecular Diagnostic Techniques , Precision Medicine , Proto-Oncogene Proteins B-raf/genetics , Quality-Adjusted Life Years
19.
Pediatr Neurosurg ; 57(1): 63-68, 2022.
Article in English | MEDLINE | ID: mdl-34749374

ABSTRACT

INTRODUCTION: Low-grade neuroepithelial tumors are a heterogeneous group of central nervous system tumors that are generally indolent in nature but in rare instances can progress to include leptomeningeal dissemination. CASE PRESENTATION: We present a case of a patient with a low-grade neuroepithelial tumor of indeterminate type with symptomatic leptomeningeal dissemination despite 3 chemotherapy regimens and radiotherapy. Somatic targetable mutation testing showed an FGFR1_TACC1 fusion. Therapy with pazopanib/topotecan was initiated, and disease stabilization was achieved. He received pazopanib/topotecan for a total of 2 years and is now >2 years from completion of treatment and continues to do well with no evidence of disease. DISCUSSION: This case highlights the utility of targetable mutation testing in therapeutic decision-making and the novel use of systemic pazopanib/topotecan therapy for refractory low-grade neuroepithelial tumor within the context of this clinical situation and specific mutation profile.


Subject(s)
Neoplasms, Neuroepithelial , Topotecan , Fetal Proteins , Humans , Indazoles , Male , Microtubule-Associated Proteins , Neoplasms, Neuroepithelial/diagnostic imaging , Neoplasms, Neuroepithelial/drug therapy , Neoplasms, Neuroepithelial/genetics , Nuclear Proteins , Pyrimidines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1 , Sulfonamides/therapeutic use
20.
Acta Neuropathol ; 141(1): 85-100, 2021 01.
Article in English | MEDLINE | ID: mdl-33216206

ABSTRACT

Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , DNA Mismatch Repair/genetics , Isocitrate Dehydrogenase/genetics , Adolescent , Adult , Astrocytoma/diagnosis , Brain Neoplasms/diagnosis , Child , DNA Methylation , Female , Gene Dosage , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Microsatellite Instability , Mutation/genetics , Neoplasm Recurrence, Local , Prognosis , Signal Transduction/genetics , Survival Analysis , X-linked Nuclear Protein/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL