Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cells Tissues Organs ; 211(3): 269-281, 2022.
Article in English | MEDLINE | ID: mdl-34380142

ABSTRACT

Microphysiological systems (MPS) or tissue chips/organs-on-chips are novel in vitro models that emulate human physiology at the most basic functional level. In this review, we discuss various hurdles to widespread adoption of MPS technology focusing on issues from multiple stakeholder sectors, e.g., academic MPS developers, commercial suppliers of platforms, the pharmaceutical and biotechnology industries, and regulatory organizations. Broad adoption of MPS technology has thus far been limited by a gap in translation between platform developers, end-users, regulatory agencies, and the pharmaceutical industry. In this brief review, we offer a perspective on the existing barriers and how end-users may help surmount these obstacles to achieve broader adoption of MPS technology.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Drug Development , Humans
2.
Adv Exp Med Biol ; 1230: 27-42, 2020.
Article in English | MEDLINE | ID: mdl-32285363

ABSTRACT

Organs-on-chips, also known as "tissue chips" or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems. This chapter will outline future avenues of research in the MPS field, how cutting-edge biotechnology advances are expanding the applications for these systems, and discuss the current and future potential and challenges remaining for the field to address.


Subject(s)
Lab-On-A-Chip Devices , Tissue Array Analysis , Animals , Drug Development , Drug Discovery , Humans
3.
Adv Exp Med Biol ; 1031: 405-415, 2017.
Article in English | MEDLINE | ID: mdl-29214585

ABSTRACT

The scientific and technological development of microphysiological systems (MPS) modeling organs-on-chips, or "tissue chips" (TCs), has progressed rapidly over the past decade. Stem cell research and microfluidic concepts have combined to lead to the development of microphysiological platforms representing an ever-expanding list of different human organ systems. In the context of rare diseases, these bioengineered microfluidics platforms hold promise for modeling of disorders and could prove useful in the screening and efficacy testing of existing therapeutics. Additionally, they have the potential for replacing and refining animal use for new drugs and clinical treatments, or could even act as surrogate human systems for testing of new therapeutics in the future, which could be particularly useful in populations of rare disease sufferers. This chapter will discuss the current state of tissue chip research, and challenges facing the field. Additionally, we will discuss how these devices are being used to model basic cellular and molecular phenotypes of rare diseases, holding promise to provide new tools for understanding of disease pathologies and screening and efficacy testing of potential therapeutics for drug discovery.


Subject(s)
Drug Discovery/instrumentation , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Orphan Drug Production , Rare Diseases/drug therapy , Cells, Cultured , Diffusion of Innovation , Drug Discovery/methods , Equipment Design , Humans , Models, Biological , Rare Diseases/diagnosis , Rare Diseases/metabolism
4.
Mol Genet Metab ; 112(2): 87-122, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667081

ABSTRACT

New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 µmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 µmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.


Subject(s)
Biopterins/analogs & derivatives , Diet Therapy , Phenylketonurias/blood , Phenylketonurias/therapy , Practice Guidelines as Topic , Biopterins/therapeutic use , Disease Management , Evidence-Based Medicine , Female , Humans , Infant, Newborn , National Institutes of Health (U.S.) , Phenylketonurias/diagnosis , Pregnancy , United States
5.
Hum Mol Genet ; 20(7): 1438-55, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21257639

ABSTRACT

The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt oligomers in the nucleus of HD neurons and in mitochondria may disrupt neuronal functions. Based on these findings, we propose that mutant Htt in association with mitochondria imbalance and mitochondrial dynamics impairs axonal transport of mitochondria, decreases mitochondrial function and damages neurons in affected brain regions of HD patients.


Subject(s)
Axons/metabolism , Frontal Lobe/metabolism , Huntington Disease/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , Axons/pathology , Biological Transport/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , DNA Damage/genetics , Electron Transport Chain Complex Proteins/biosynthesis , Electron Transport Chain Complex Proteins/genetics , Female , Frontal Lobe/pathology , Gene Expression Regulation/genetics , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mitochondria/genetics , Mitochondria/pathology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
6.
Viruses ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: mdl-35632824

ABSTRACT

The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADx) initiative to meet the needs for COVID-19 diagnostic and surveillance testing, and to speed its innovation in the development, commercialization, and implementation of new technologies and approaches. The RADx Radical (RADx-Rad) initiative is one component of the NIH RADx program which focuses on the development of new or non-traditional applications of existing approaches, to enhance their usability, accessibility, and/or accuracy for the detection of SARS-CoV-2. Exosomes are a subpopulation of extracellular vesicles (EVs) 30-140 nm in size, that are critical in cell-to-cell communication. The SARS-CoV-2 virus has similar physical and molecular properties as exosomes. Therefore, the novel tools and technologies that are currently in development for the isolation and detection of exosomes, may prove to be invaluable in screening for SARS-CoV-2 viral infection. Here, we describe how novel exosome-based technologies are being pivoted for the detection of SARS-CoV-2 and/or the diagnosis of COVID-19. Considerations for these technologies as they move toward clinical validation and commercially viable diagnostics is discussed along with their future potential. Ultimately, the technologies in development under the NIH RADx-Rad exosome-based non-traditional technologies toward multi-parametric and integrated approaches for SARS-CoV-2 program represent a significant advancement in diagnostic technology, and, due to a broad focus on the biophysical and biochemical properties of nanoparticles, the technologies have the potential to be further pivoted as tools for future infectious agents.


Subject(s)
COVID-19 , Exosomes , COVID-19/diagnosis , Humans , SARS-CoV-2 , Technology , United States
7.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Article in English | MEDLINE | ID: mdl-36177947

ABSTRACT

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Subject(s)
Engineering , Organoids , Humans , Tissue Engineering
8.
Cell Mol Life Sci ; 67(3): 353-68, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19826765

ABSTRACT

Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.


Subject(s)
Brain/enzymology , Transaminases/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Humans , Kynurenic Acid/metabolism , Mice , Protein Structure, Tertiary , Transaminases/genetics , Transaminases/physiology
9.
Exp Biol Med (Maywood) ; 246(12): 1435-1446, 2021 06.
Article in English | MEDLINE | ID: mdl-33899539

ABSTRACT

Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.


Subject(s)
Drug Development/methods , Microchip Analytical Procedures/methods , Animals , Humans
10.
Nat Rev Drug Discov ; 20(5): 345-361, 2021 05.
Article in English | MEDLINE | ID: mdl-32913334

ABSTRACT

Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.


Subject(s)
Computer Simulation , Drug Discovery/trends , Microchip Analytical Procedures , Animal Testing Alternatives , Animals , Biomedical Engineering , Cell Culture Techniques , Cells, Cultured , Humans
11.
BMC Biochem ; 11: 19, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20482848

ABSTRACT

BACKGROUND: Kynurenine aminotransferase (KAT) catalyzes the transamination of kynunrenine to kynurenic acid (KYNA). KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains. RESULTS: This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65 degrees C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5 degrees C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively. CONCLUSION: The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases.


Subject(s)
Transaminases/antagonists & inhibitors , Amino Acids/metabolism , Animals , Aspartic Acid/pharmacology , Brain/enzymology , Half-Life , Hydrogen-Ion Concentration , Male , Methionine/pharmacology , Mice , Mice, Inbred C57BL , Protein Denaturation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Stability , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Substrate Specificity , Temperature , Transaminases/metabolism , Tryptophan/pharmacology
12.
Article in English | MEDLINE | ID: mdl-33490601

ABSTRACT

The discovery that all cells secrete extracellular vesicles (EVs) to shuttle proteins and nucleic acids to recipient cells suggested they play an important role in intercellular communication. EVs are widely distributed in many body fluids, including blood, cerebrospinal fluid, urine and saliva. Exosomes are nano-sized EVs of endosomal origin that regulate many pathophysiological processes including immune responses, inflammation, tumour growth, and infection. Healthy individuals release exosomes with a cargo of different RNA, DNA, and protein contents into the circulation, which can be measured non-invasively as biomarkers of healthy and diseased states. Cancer-derived exosomes carry a unique set of DNA, RNA, protein and lipid reflecting the stage of tumour progression, and may serve as diagnostic and prognostic biomarkers for various cancers. However, many gaps in knowledge and technical challenges in EVs and extracellular RNA (exRNA) biology, such as mechanisms of EV biogenesis and uptake, exRNA cargo selection, and exRNA detection remain. The NIH Common Fund-supported exRNA Communication Consortium was launched in 2013 to address major scientific challenges in this field. This review focuses on scientific highlights in biomarker discovery of exosome-based exRNA in cancer and its possible clinical application as cancer biomarkers.

13.
J Ocul Pharmacol Ther ; 36(1): 25-29, 2020.
Article in English | MEDLINE | ID: mdl-31166829

ABSTRACT

In this study, we describe efforts by the National Eye Institute (NEI) and National Center for Advancing Translational Science (NCATS) to catalyze advances in 3-dimensional (3-D) ocular organoid and microphysiological systems (MPS). We reviewed the recent literature regarding ocular organoids and tissue chips. Animal models, 2-dimensional cell culture models, and postmortem human tissue samples provide the vision research community with insights critical to understanding pathophysiology and therapeutic development. The advent of induced pluripotent stem cell technologies provide researchers with enticing new approaches and tools that augment study in more traditional models to provide the scientific community with insights that have previously been impossible to obtain. Efforts by the National Institutes of Health (NIH) have already accelerated the pace of scientific discovery, and recent advances in ocular organoid and MPS modeling approaches have opened new avenues of investigation. In addition to more closely recapitulating the morphologies and physiological responses of in vivo human tissue, key breakthroughs have been made in the past year to resolve long-standing scientific questions regarding tissue development, molecular signaling, and pathophysiological mechanisms that promise to provide advances critical to therapeutic development and patient care. 3-D tissue culture modeling and MPS offer platforms for future high-throughput testing of therapeutic candidates and studies of gene interactions to improve models of complex genetic diseases with no well-defined etiology, such as age-related macular degeneration and Fuchs' dystrophy.


Subject(s)
Drug Development , Induced Pluripotent Stem Cells/metabolism , Lab-On-A-Chip Devices , Models, Biological , Ophthalmic Solutions/chemical synthesis , Organoids/metabolism , Animals , Humans , Induced Pluripotent Stem Cells/chemistry , Ophthalmic Solutions/chemistry , Organoids/chemistry , Tissue Engineering
14.
ALTEX ; 37(3): 365-394, 2020.
Article in English | MEDLINE | ID: mdl-32113184

ABSTRACT

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Subject(s)
Animal Testing Alternatives , Animal Welfare , Drug Development , Drug Evaluation, Preclinical/methods , Lab-On-A-Chip Devices , Animals , Drug Industry , Humans , Models, Biological
15.
Curr Opin Pharmacol ; 48: 146-154, 2019 10.
Article in English | MEDLINE | ID: mdl-31622895

ABSTRACT

Approximately 30% of drugs have failed in human clinical trials due to adverse reactions despite promising pre-clinical studies, and another 60% fail due to lack of efficacy. One of the major causes in the high attrition rate is the poor predictive value of current preclinical models used in drug development despite promising pre-clinical studies in 2-D cell culture and animal models. Microphysiological Systems or Tissue Chips are bioengineered microfluidic cell culture systems seeded with primary or stem cells that mimic the histoarchitecture, mechanics and physiological response of functional units of organs and organ systems. These platforms are useful tools for predictive toxicology and efficacy assessments of candidate therapeutics. Implementation of tissue chips in drug development requires effective partnerships with stakeholders, such as regulatory agencies, pharmaceutical companies, patient groups, and other government agencies. Tissue chips are also finding utility in studies in precision medicine, environmental exposures, reproduction and development, infectious diseases, microbiome and countermeasures agents.


Subject(s)
Drug Development , Animals , Humans , Lab-On-A-Chip Devices , National Institutes of Health (U.S.) , Tissue Engineering , United States
16.
Front Robot AI ; 6: 143, 2019.
Article in English | MEDLINE | ID: mdl-33501158

ABSTRACT

In recent years, artificial intelligence (AI)/machine learning (ML; a subset of AI) have become increasingly important to the biomedical research community. These technologies, coupled to big data and cheminformatics, have tremendous potential to improve the design of novel therapeutics and to provide safe and effective drugs to patients. A National Center for Advancing Translational Sciences (NCATS) program called A Specialized Platform for Innovative Research Exploration (ASPIRE) leverages advances in AI/ML, automated synthetic chemistry, and high-throughput biology, and seeks to enable translation and drug development by catalyzing exploration of biologically active chemical space. Here we discuss the opportunities and challenges surrounding the application of AI/ML to the exploration of novel biologically relevant chemical space as part of ASPIRE.

17.
Biosci Rep ; 28(4): 205-15, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18620547

ABSTRACT

KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.


Subject(s)
Transaminases/chemistry , Transaminases/metabolism , Amino Acids/metabolism , Humans , Ketoglutaric Acids/metabolism , Kinetics , Kynurenic Acid/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Temperature
18.
Mol Cell Biol ; 24(16): 6919-30, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15282294

ABSTRACT

Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.


Subject(s)
Behavior, Animal/physiology , Brain/enzymology , Transaminases/metabolism , Animals , Blood Chemical Analysis , Brain/cytology , Brain Chemistry , Female , Humans , Kidney/enzymology , Kynurenic Acid/metabolism , Kynurenine/chemistry , Kynurenine/metabolism , Liver/enzymology , Mice , Mice, Inbred Strains , Mice, Knockout , Motor Activity/physiology , Neurons/cytology , Neurons/metabolism , Phenotype , Pregnancy , Quinolinic Acid/metabolism , Rats , Transaminases/genetics , Tryptophan/metabolism
19.
Exp Biol Med (Maywood) ; 242(16): 1573-1578, 2017 10.
Article in English | MEDLINE | ID: mdl-28343437

ABSTRACT

The National Institutes of Health Microphysiological Systems (MPS) program, led by the National Center for Advancing Translational Sciences, is part of a joint effort on MPS development with the Defense Advanced Research Projects Agency and with regulatory guidance from FDA, is now in its final year of funding. The program has produced many tangible outcomes in tissue chip development in terms of stem cell differentiation, microfluidic engineering, platform development, and single and multi-organ systems-and continues to help facilitate the acceptance and use of tissue chips by the wider community. As the first iteration of the program draws to a close, this Commentary will highlight some of the goals met, and lay out some of the challenges uncovered that will remain to be addressed as the field progresses. The future of the program will also be outlined. Impact statement This work is important to the field as it outlines the progress and challenges faced by the NIH Microphysiological Systems program to date, and the future of the program. This is useful information for the field to be aware of, both for current program stakeholders and future awardees and partners.


Subject(s)
Microchip Analytical Procedures/methods , Microfluidics/methods , Tissue Engineering/methods , Government Programs , Humans , Lab-On-A-Chip Devices , National Institutes of Health (U.S.) , United States
20.
Gene ; 365: 111-8, 2006 Jan 03.
Article in English | MEDLINE | ID: mdl-16376499

ABSTRACT

Kynurenine aminotransferase (KAT) is an enzyme responsible for synthesis of kynurenic acid (KYNA), a well established neuroprotective and anticonvulsant agent, involved in synaptic transmission and implicated in the pathophysiology of schizophrenia, Huntington's disease and other neurological disorders. We have shown previously that kat2-/- mice had lower hippocampal KYNA levels and were more hyperactive than wild-type mice. However, these abnormalities occur early and are transitory coinciding with restoration of KYNA levels, suggesting that compensatory changes or ontogenetic expression of another unknown homolog may account for the normalization of KYNA levels in the adult kat2-/- mice brain. Here, we report the isolation of a novel KAT molecule, kat3, from mouse and human brain cDNA libraries. The encoded 454 amino acids of human KAT III share 64.8% similarity to that of KAT I and 30.1% to KAT II. Northern blot analysis demonstrated that kat3 mRNA is widely expressed but with higher expression levels in liver, kidney, heart, and neuroendocrine tissues. RT-PCR and Northern analysis showed that kat3 expression starts as early as postnatal day (PND) 7 and peaks in adult. The mRNA level of kat3 and kat1 when measured together is significantly higher at PND 60 in kat2-/- mice than those of wild-type mice indicating possible co-regulation of expression levels. RNA-interference (RNAi) directed towards transcripts for either R03A10.4 or F28H6.3 in Caenorhabditis elegans which are kat1 and kat3 orthologs, respectively, did not result in any gross abnormalities. Our results show that upregulation of kat3 and kat1 may be responsible for the phenotypic rescue on kat2-/- mice.


Subject(s)
Phylogeny , Transaminases/chemistry , Transaminases/genetics , 5' Untranslated Regions , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Brain/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Consensus Sequence , Conserved Sequence , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Exons , Expressed Sequence Tags , Gene Library , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , RNA Interference , RNA, Messenger/analysis , Sequence Homology, Amino Acid , Tissue Distribution , Transaminases/deficiency , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL