Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Physiol Endocrinol Metab ; 316(3): E475-E486, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30620637

ABSTRACT

Glucose-stimulated insulin secretion from pancreatic ß-cells is controlled by a triggering pathway that culminates in calcium influx and regulated exocytosis of secretory granules, and by a less understood amplifying pathway that augments calcium-induced exocytosis. In response to an abrupt increase in glucose concentration, insulin secretion exhibits a first peak followed by a lower sustained second phase. This biphasic secretion pattern is disturbed in diabetes. It has been attributed to depletion and subsequent refilling of a readily releasable pool of granules or to the phasic cytosolic calcium dynamics induced by glucose. Here, we apply mathematical modeling to experimental data from mouse islets to investigate how calcium and granule pool dynamics interact to control dynamic insulin secretion. Experimental calcium traces are used as inputs in three increasingly complex models of pool dynamics, which are fitted to insulin secretory patterns obtained using a set of protocols of glucose and tolbutamide stimulation. New calcium and secretion data for so-called staircase protocols, in which the glucose concentration is progressively increased, are presented. These data can be reproduced without assuming any heterogeneity in the model, in contrast to previous modeling, because of nontrivial calcium dynamics. We find that amplification by glucose can be explained by increased mobilization and priming of granules. Overall, our results indicate that calcium dynamics contribute substantially to shaping insulin secretion kinetics, which implies that better insight into the events creating phasic calcium changes in human ß-cells is needed to understand the cellular mechanisms that disturb biphasic insulin secretion in diabetes.


Subject(s)
Calcium Signaling/physiology , Glucose/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Secretory Vesicles/metabolism , Animals , Female , Islets of Langerhans/metabolism , Mice , Models, Theoretical
2.
Biophys J ; 112(1): 162-171, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-28076808

ABSTRACT

Glucagon-like peptide 1 (GLP-1) is secreted by intestinal L-cells, and augments glucose-induced insulin secretion, thus playing an important role in glucose control. The stimulus-secretion pathway in L-cells is still incompletely understood and a topic of debate. It is known that GLP-1 secreting cells can sense glucose to promote electrical activity either by the electrogenic sodium-glucose cotransporter SGLT1, or by closure of ATP-sensitive potassium channels after glucose metabolism. Glucose also has an effect on GLP-1 secretion downstream of electrical activity. An important aspect to take into account is the spatial organization of the cell. Indeed, the glucose transporter GLUT2 is located at the basolateral, vascular side, while SGLT1 is exposed to luminal glucose at the apical side of the cell, suggesting that the two types of transporters play different roles in glucose sensing. Here, we extend our recent model of electrical activity in primary L-cells to include spatiotemporal glucose and Ca2+ dynamics, and GLP-1 secretion. The model confirmed that glucose transportation into the cell through SGLT1 cotransporters can induce Ca2+ influx and release of GLP-1 as a result of electrical activity, while glucose metabolism alone is insufficient to depolarize the cell and evoke GLP-1 secretion in the model, suggesting a crucial role for SGLT1 in triggering GLP-1 release in agreement with experimental studies. We suggest a secondary, but participating, role of GLUT2 and glucose metabolism for GLP-1 secretion via an amplifying pathway that increases the secretion rate at a given Ca2+ level.


Subject(s)
Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Models, Biological , Calcium/metabolism , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Sodium-Glucose Transporter 1/metabolism
3.
Biophys J ; 112(11): 2387-2396, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28591611

ABSTRACT

Large-conductance Ca2+-dependent K+ (BKCa) channels are important regulators of electrical activity. These channels colocalize and form ion channel complexes with voltage-dependent Ca2+ (CaV) channels. Recent stochastic simulations of the BKCa-CaV complex with 1:1 stoichiometry have given important insight into the local control of BKCa channels by fluctuating nanodomains of Ca2+. However, such Monte Carlo simulations are computationally expensive, and are therefore not suitable for large-scale simulations of cellular electrical activity. In this work we extend the stochastic model to more realistic BKCa-CaV complexes with 1:n stoichiometry, and analyze the single-complex model with Markov chain theory. From the description of a single BKCa-CaV complex, using arguments based on timescale analysis, we derive a concise model of whole-cell BKCa currents, which can readily be analyzed and inserted into models of cellular electrical activity. We illustrate the usefulness of our results by inserting our BKCa description into previously published whole-cell models, and perform simulations of electrical activity in various cell types, which show that BKCa-CaV stoichiometry can affect whole-cell behavior substantially. Our work provides a simple formulation for the whole-cell BKCa current that respects local interactions in BKCa-CaV complexes, and indicates how local-global coupling of ion channels may affect cell behavior.


Subject(s)
Calcium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Models, Biological , Calcium/metabolism , Cations, Divalent/metabolism , Humans , Lactotrophs/metabolism , Markov Chains , Membrane Potentials/physiology , Neurons/metabolism , Stochastic Processes
4.
Am J Physiol Endocrinol Metab ; 310(7): E515-25, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26786781

ABSTRACT

Endocrine cells of the pituitary gland secrete a number of hormones, and the amount of hormone released by a cell is controlled in large part by the cell's electrical activity and subsequent Ca(2+) influx. Typical electrical behaviors of pituitary cells include continuous spiking and so-called pseudo-plateau bursting. It has been shown that the amplitude of Ca(2+) fluctuations is greater in bursting cells, leading to the hypothesis that bursting cells release more hormone than spiking cells. In this work, we apply computer simulations to test this hypothesis. We use experimental recordings of electrical activity as input to mathematical models of Ca(2+) channel activity, buffered Ca(2+) diffusion, and Ca(2+)-driven exocytosis. To compare the efficacy of spiking and bursting on the same cell, we pharmacologically block the large-conductance potassium (BK) current from a bursting cell or add a BK current to a spiking cell via dynamic clamp. We find that bursting is generally at least as effective as spiking at evoking hormone release and is often considerably more effective, even when normalizing to Ca(2+) influx. Our hybrid experimental/modeling approach confirms that adding a BK-type K(+) current, which is typically associated with decreased cell activity and reduced secretion, can actually produce an increase in hormone secretion, as suggested earlier.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Exocytosis , Gonadotrophs/metabolism , Lactotrophs/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Pituitary Hormones/metabolism , Secretory Vesicles/metabolism , Somatotrophs/metabolism , Animals , Computer Simulation , Models, Theoretical , Patch-Clamp Techniques , Rats
5.
J Pharmacol Toxicol Methods ; 123: 107298, 2023.
Article in English | MEDLINE | ID: mdl-37480964

ABSTRACT

Microsampling, a reduced volume sampling method, has successfully gained attention at the International Conference on Harmonization (ICH) level and established benefits support its use in Toxicokinetic (TK) studies. These improved sampling techniques are less invasive and in large animal species improve animal welfare (refinement). To evaluate if the plasma concentrations of drugs were influenced by the blood sampling method, the traditional method from femoral vein and microsampling from tail vein in Cynomolgus monkeys were compared. The pharmacokinetic parameters (Cmax, Tmax and AUC) of four drugs (selected based on acid-base and volume of distribution properties) in non-human primate were correlated. The plasma samples were quantified using standard LC-MS/MS methods, qualified to evaluate the precision and accuracy before the analysis of real samples. The results reported in this work demonstrated the suitability of microsampling in supporting PK/TK studies in non-human primates. The data show that the exposure of drugs tested after blood collection using standard procedure from femoral vein and microsampling from tail vein is correlated and is not influenced by acid-base characteristics and volume of distribution.


Subject(s)
Blood Specimen Collection , Tandem Mass Spectrometry , Animals , Macaca fascicularis , Chromatography, Liquid , Blood Specimen Collection/methods , Capillaries
6.
Math Biosci ; 283: 60-70, 2017 01.
Article in English | MEDLINE | ID: mdl-27838280

ABSTRACT

Most endocrine cells secrete hormones as a result of Ca2+-regulated exocytosis, i.e., fusion of the membranes of hormone-containing secretory granules with the cell membrane, which allows the hormone molecules to escape to the extracellular space. As in neurons, electrical activity and cell depolarization open voltage-sensitive Ca2+ channels, and the resulting Ca2+ influx elevate the intracellular Ca2+ concentration, which in turn causes exocytosis. Whereas the main molecular components involved in exocytosis are increasingly well understood, quantitative understanding of the dynamical aspects of exocytosis is still lacking. Due to the nontrivial spatiotemporal Ca2+ dynamics, which depends on the particular pattern of electrical activity as well as Ca2+ channel kinetics, exocytosis is dependent on the spatial arrangement of Ca2+ channels and secretory granules. For example, the creation of local Ca2+ microdomains, where the Ca2+ concentration reaches tens of µM, are believed to be important for triggering exocytosis. Spatiotemporal simulations of buffered Ca2+ diffusion have provided important insight into the interplay between electrical activity, Ca2+ channel kinetics, and the location of granules and Ca2+ channels. By confronting simulations with statistical time-to-event (or survival) regression analysis of single granule exocytosis monitored with TIRF microscopy, a direct connection between location and rate of exocytosis can be obtained at the local, single-granule level. To get insight into whole-cell secretion, simplifications of the full spatiotemporal dynamics have shown to be highly helpful. Here, we provide an overview of recent approaches and results for quantitative analysis of Ca2+ regulated exocytosis of hormone-containing granules.


Subject(s)
Data Interpretation, Statistical , Endocrine Cells/physiology , Exocytosis/physiology , Animals , Humans , Models, Theoretical
7.
Islets ; 7(4): e1107255, 2015.
Article in English | MEDLINE | ID: mdl-26732126

ABSTRACT

Disturbances in pulsatile insulin secretion and Ca(2+) oscillations in pancreatic ß-cells are early markers of diabetes, but the underlying mechanisms are still incompletely understood. Reactive oxygen/nitrogen species (ROS/RNS) are implicated in reduced ß-cell function, and ROS/RNS target several Ca(2+) pumps and channels. Thus, we hypothesized that ROS/RNS could disturb Ca(2+) oscillations and downstream insulin pulsatility. We show that ROS/RNS production by photoactivation of aluminum phthalocyanine chloride (AlClPc) abolish or accelerate Ca(2+) oscillations in the MIN6 ß-cell line, depending on the amount of ROS/RNS. Application of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) inhibitor thapsigargin modifies the Ca(2+) response to high concentrations of ROS/RNS. Further, thapsigargin produces effects that resemble those elicited by moderate ROS/RNS production. These results indicate that ROS/RNS interfere with endoplasmic reticulum Ca(2+) handling. This idea is supported by theoretical studies using a mathematical model of Ca(2+) handling adapted to MIN6 cells. Our results suggest a putative link between ROS/RNS and disturbed pulsatile insulin secretion.


Subject(s)
Calcium Signaling/drug effects , Insulin-Secreting Cells/drug effects , Reactive Nitrogen Species/pharmacology , Reactive Oxygen Species/pharmacology , Animals , Cells, Cultured , Glucose/pharmacology , Indoles/pharmacology , Insulin-Secreting Cells/metabolism , Mice , Organometallic Compounds/pharmacology , Potassium Channels/drug effects , Potassium Channels/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL