Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
Add more filters

Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36794421

ABSTRACT

Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, ß-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.


Fungal-based bioactive compounds have various health benefits.Prebiotic fungi play an active role in the regulation of gut microbiota.Anti-tumor effective fungal components will contribute to alternative medicine.Beta-glucan and chitin are the most promising fungal metabolites for cancer treatment.

2.
Biotechnol Appl Biochem ; 69(3): 1267-1274, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34196033

ABSTRACT

Raw syngas contains tar contaminants including toluene and naphthalene, which inhibit its conversion to methane. Cell encasement in a hydrophilic reverse membrane bioreactor (RMBR) could protect the cells from hydrophobic contaminants. This study aimed to investigate the inhibition of toluene and naphthalene and the effect of using RMBR. In this work, toluene and naphthalene were added at concentrations of 0.5-1.0 and 0.1-0.2 g/L in batch operation. In continuous operation, concentration of 0-6.44 g/L for toluene and 0-1.28 g/L for naphthalene were studied. The results showed that no inhibition was observed in batch operation for toluene and naphthalene at concentrations up to 1 and 0.2 g/L, respectively. In continuous operation of free cell bioreactors (FCBRs), inhibition of toluene and naphthalene started at 2.05 and 0.63 g/L, respectively. When they were present simultaneously, inhibition of toluene and naphthalene occurred at concentrations of 3.14 and 0.63 g/L, respectively. In continuous RMBRs, no inhibition for toluene and less inhibition for naphthalene were observed, resulting in higher methane production from RMBR than that of FCBR. These results indicated that RMBR system gave a better protection effect against inhibitors compared with FCBR.


Subject(s)
Bioreactors , Toluene , Anaerobiosis , Methane/metabolism , Naphthalenes/pharmacology , Toluene/metabolism
3.
J Environ Manage ; 303: 114138, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34838385

ABSTRACT

Vinasse and whey are wastewaters that are produced in large quantities in the sugar-to-ethanol and dairy industries, respectively. They pose a considerable threat to the environment due to the high concentration of nutrients and COD. In this study, the potential of producing protein-rich fungal biomass and biomethane from vinasse and whey through a two-stage biorefinery was examined. In the first stage, an edible and safe for human filamentous fungus, Neurospora intermedia, was cultivated on these wastewaters. To maximize the fungal biomass yield, the cultivation parameters, i.e., pH, vinasse to whey ratio, incubation time, and nutrients supplementation, were optimized. The highest yield of 12.0 g biomass per L of wastewaters was obtained by cultivation at pH 6.5 and vinasse to whey ratio of 25:75 (v/v) for 96 h with nitrogen source supplementation. The N. intermedia biomass contained about 45% protein and noticeable essential amino acid contents, comparable to commercial sources of protein for aquatic feed such as soybean meal and fishmeal. In the second stage, the effluent of fungal cultivation was anaerobically digested to produce 425 mL/g VS biomethane. Overall, 1 m3 of wastewater yielded 5.4 kg crude protein and 10.3 m3 methane, accompanied by 93.3% COD removal.


Subject(s)
Biofuels , Whey , Biomass , Bioreactors , Humans , Methane
4.
Curr Microbiol ; 77(10): 2565-2574, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32361845

ABSTRACT

Hot springs are fascinating extreme environments for the isolation of polyextremophilic microorganisms with extraordinary characteristics. Since polyextremophilic bacterial growth are not as high as routine bacteria, the objective of this study was to investigate the effect of some environmental factors on biomass and metabolites productions in the newly isolated strain, from Larijan hot spring in Iran. The strain was identified as Aeribacillus pallidus Lhs-10 and deposited as CCUG 72355 and IBRC-M 11202 in Sweden and Iran, respectively. This thermoalkaliphilic strain can grow best at 50 °C, pH 8 and in the presence of 25 g/l NaCl. The physiological characterization of this strain show that [Ca/Mg] ratio affect its growth and biomass production with the best results obtained at the ratio of 2.5. Moreover, lactic and acetic acids production by this strain was affected by pH, aeration, and temperature, where a metabolic shift was detected from lactate to acetate production when the culture was aerated. Besides, its spores could tolerate heating at 80, 85, 90, 95 and 98 °C for 30 min without any reduction in the initial spore population, whereas D-value was defined 50 min at 98 °C. This newly lactic acid-producing strain of A. pallidus can be a promising strain that can be used in the harsh conditions in industrial processes.


Subject(s)
Hot Temperature , Magnesium , Bacillaceae , Biomass , Calcium , Iran , Spores , Spores, Bacterial , Sweden
5.
Molecules ; 24(4)2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30781572

ABSTRACT

Integrated enzyme production in the biorefinery can significantly reduce the cost of the entire process. The purpose of the present study is to evaluate the production of two hydrolyzing enzymes (amylase and xylanase) by an edible fungus used in the biorefinery, Neurospora intermedia. The enzyme production was explored through submerged fermentation of synthetic media and a wheat-based waste stream (thin stillage and wheat bran). The influence of a nitrogen source on N. intermedia was investigated and a combination of NaNO3 and yeast extract has been identified as the best nitrogen source for extracellular enzyme production. N. intermedia enzymes showed maximum activity at 65 °C and pH around 5. Under these conditions, the maximum velocity of amylase and xylanase for starch and xylan hydrolysis was found to be 3.25 U mL-1 and 14.77 U mL-1, respectively. Cultivation of N. intermedia in thin stillage and wheat bran medium resulted in relatively high amylase (8.86 ± 0.41 U mL-1, 4.68 ± 0.23) and xylanase (5.48 ± 0.21, 2.58 ± 0.07 U mL-1) production, respectively, which makes this fungus promising for enzyme production through a wheat-based biorefinery.


Subject(s)
Amylases/biosynthesis , Amylases/chemistry , Neurospora/enzymology , Xylosidases/biosynthesis , Xylosidases/chemistry , Enzyme Activation , Ethanol/metabolism , Fermentation , Glucose/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Nitrogen/metabolism , Starch/chemistry , Temperature , Triticum/chemistry , Triticum/metabolism , Xylans/chemistry
6.
World J Microbiol Biotechnol ; 35(10): 147, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31549247

ABSTRACT

The term mycoprotein refers to the protein-rich food made of filamentous fungal biomass that can be consumed as an alternative to meat. In this paper, the impact caused by the substitution of animal-origin meat in the human diet for mycoprotein on the health and the environment is reviewed. Presently, mycoprotein can be found in the supermarkets of developed countries in several forms (e.g. sausages and patties). Expansion to other markets depends on the reduction of the costs. Although scarce, the results of life cycle analyses of mycoprotein agree that this meat substitute causes an environmental impact similar to chicken and pork. In this context, the use of inexpensive agro-industrial residues as substrate for mycoprotein production has been investigated. This strategy is believed to reduce the costs involved in the fungal cultivation and lower the environmental impact of both the mycoprotein and the food industry. Moreover, several positive effects in health have been associated with the substitution of meat for mycoprotein, including improvements in blood cholesterol concentration and glycemic response. Mycoprotein has found a place in the market, but questions regarding the consumer's experience on the sensory and health aspects are still being investigated.


Subject(s)
Food Additives/metabolism , Fungal Proteins/metabolism , Fungi/metabolism , Animals , Environment , Food Additives/analysis , Food Additives/economics , Fungal Proteins/analysis , Fungal Proteins/economics , Fungi/chemistry , Fungi/growth & development , Health , Humans
7.
BMC Biotechnol ; 18(1): 49, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30119626

ABSTRACT

BACKGROUND: Integration of first- and second-generation ethanol processes is one among the alternate approaches that efficiently address the current socio-economic issues of the bioethanol sector. Edible filamentous fungus capable of utilizing pentoses from lignocelluloses and also possessing biomass application as potential animal feed component was used as the fermentation strain for the integration model. This study presents various fermentation aspects of using edible filamentous fungi in the integrated first and second generation ethanol process model. RESULTS: Fermentation of edible strain of N. intermedia on the integrated first and second-generation ethanol substrate (the mixture of dilute acid pretreated and enzymatically hydrolyzed wheat straw and thin stillage from the first-generation ethanol process), showed an ethanol yield maximum of 0.23 ± 0.05 g/g dry substrate. The growth of fungal pellets in presence of fermentation inhibitors (such as acetic acid, HMF and furfural) resulted in about 11 to 45% increase in ethanol production as compared to filamentous forms, at similar growth conditions in the liquid straw hydrolysate. Fungal cultivations in the airlift reactor showed strong correlation with media viscosity, reaching a maximum of 209.8 ± 3.7 cP and resulting in 18.2 ± 1.3 g/L biomass during the growth phase of fungal pellets. CONCLUSION: N. intermedia fermentation showed high sensitivity to the dilute acid lignocellulose pretreatment process, with improved fermentation performance at milder acidic concentrations. The rheological examinations showed media viscosity to be the most critical factor influencing the oxygen transfer rate during the N. intermedia fermentation process. Mycelial pellet morphology showed better fermentation efficiency and high tolerance towards fermentation inhibitors.


Subject(s)
Fermentation , Lignin/metabolism , Neurospora/growth & development , Neurospora/metabolism , Triticum/microbiology , Bioreactors , Ethanol/metabolism , Hydrolysis
8.
Molecules ; 23(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572677

ABSTRACT

Citrus waste is a promising potential feedstock for anaerobic digestion, yet the presence of inhibitors such as d-limonene is known to limit the process. Effluent recirculation has been proven to increase methane yield in a semi-continuous process for recalcitrant material, but it has never been applied to toxic materials. This study was aimed to investigate the effect of recirculation on biogas production from citrus waste as toxic feedstock in two-stage anaerobic digestion. The first digestion was carried out in a stirred tank reactor (STR). The effluent from the first-stage was filtered using a rotary drum filter to separate the solid and the liquid phase. The solid phase, rich in hydrophobic D-limonene, was discarded, and the liquid phase containing less D-limonene was fed into the second digester in an up-flow anaerobic sludge bed (UASB) reactor. A high organic loading rate (OLR 5 g VS/(L·day)) of citrus waste was fed into the first-stage reactor every day. The effluent of the first-stage was then fed into the second-stage reactor. This experiment was run for 120 days. A reactor configuration without recirculation was used as control. The result shows that the reactor with effluent recirculation produced a higher methane yield (160⁻203 NmL/g·VS) compared to that without recirculation (66⁻113 NmL/g·VS). More stable performance was also observed in the reactor with recirculation as shown by the pH of 5⁻6, while without recirculation the pH dropped to the range of 3.7⁻4.7. The VS reduction for the reactor with recirculation was 33⁻35% higher than that of the control without recirculation. Recirculation might affect the hydrolysis-acidogenesis process by regulating pH in the first-stage and removing most of the D-limonene content from the substrate through filtration.


Subject(s)
Biofuels , Waste Disposal, Fluid , Anaerobiosis , Citrus
9.
J Environ Sci (China) ; 64: 149-156, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29478634

ABSTRACT

The use of consecutive feeding was applied to investigate the response of the microbial biomass to a second addition of substrates in terms of biodegradation using batch tests as a promising alternative to predict the behavior of the process. Anaerobic digestion (AD) of the slaughterhouse waste (SB) and its co-digestion with manure (M), various crops (VC), and municipal solid waste were evaluated. The results were then correlated to previous findings obtained by the authors for similar mixtures in batch and semi-continuous operation modes. AD of the SB failed showing total inhibition after a second feeding. Co-digestion of the SB+M showed a significant improvement for all of the response variables investigated after the second feeding, while co-digestion of the SB+VC resulted in a decline in all of these response variables. Similar patterns were previously detected, during both the batch and the semi-continuous modes.


Subject(s)
Abattoirs , Industrial Waste , Refuse Disposal/methods , Anaerobiosis , Biodegradation, Environmental , Bioreactors
10.
Int J Mol Sci ; 17(3): 302, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26927089

ABSTRACT

The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.


Subject(s)
Biomass , Bioreactors/microbiology , Ethanol/metabolism , Fermentation , Mucor/metabolism , Rhizopus/metabolism , Chitin/metabolism , Chitosan/metabolism , Citrus/chemistry , Fungal Proteins/metabolism , Industrial Microbiology/instrumentation , Industrial Microbiology/methods , Mucor/growth & development , Rhizopus/growth & development
11.
Bioprocess Biosyst Eng ; 38(2): 389-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25194465

ABSTRACT

More than half of the bioethanol plants in operation today use corn or grains as raw materials. The downstream processing of mash after fermentation to produce ethanol and distiller grains is an energy-demanding process, which needs retrofitting for optimization. In addition, the fluctuation in the ethanol and grain prices affects the overall profitability of the plant. For this purpose, a process simulation was performed in Aspen Plus(®) based on an existing industrial plant located in Sweden. The simulations were compared using different scenarios including different concentrations of ethanol, using the stillage for biogas production to produce steam instead of distiller grains as a by-product, and altering the purity of the ethanol produced. Using stillage for biogas production, as well as utilizing the steam, reduced the overall energy consumption by 40% compared to the plant in operation. The fluctuations in grain prices had a high impact on the net present value (NPV), where grain prices greater than 349 USD/ton reached a zero NPV. After 20 years, the plant in operation producing 41,600 tons ethanol/year can generate a profit of 78 million USD. Compared to the base case, the less purified ethanol resulted in a lower NPV of 30 million USD.


Subject(s)
Bioreactors/economics , Bioreactors/microbiology , Edible Grain/microbiology , Ethanol/economics , Ethanol/metabolism , Models, Economic , Computer Simulation , Models, Biological , Process Assessment, Health Care , United States
12.
Appl Environ Microbiol ; 80(22): 6908-18, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172866

ABSTRACT

Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Biofuels , Carboxylic Acids/pharmacology , Cellulose/metabolism , Fermentation , Flocculation , Furaldehyde/pharmacology , Industrial Microbiology , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Bioresour Technol ; 393: 130102, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016584

ABSTRACT

Rhodosporidium toruloides, an oleaginous yeast, is a potential feedstock for biodiesel production due to its ability to utilize lignocellulosic biomass-derived hydrolysate with a considerably high lipid titer of 50-70 % w/w. Hence, for the first-time environmental assessment of large-scale R. toruloides-based biodiesel production from wood hydrolysate and crude glycerol was conducted. The global warming potential was observed to be 0.67 kg CO2 eq./MJ along with terrestrial ecotoxicity of 1.37 kg 1,4-DCB eq./MJ and fossil depletion of 0.13 kg oil eq./MJ. The highest impacts for global warming (∼45 %) and fossil depletion (∼37 %) are attributed to the use of chloroform for lipid extraction while fuel consumption for transportation contributed more than 50 % to terrestrial ecotoxicity. Further, sensitivity analysis revealed that maximizing biodiesel yield by increasing lipid yield and solid loading could contribute to reduced environmental impacts. In nutshell, this investigation reveals that environmental impact varies with the type of chemical utilized.


Subject(s)
Basidiomycota , Glycerol , Rhodotorula , Biofuels , Wood , Lipids
14.
Sci Rep ; 14(1): 18056, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103400

ABSTRACT

The production of date syrup yields a substantial amount of date press cake (DPC), fibrous and moisturising material with great potential for generating value through bioprocessing. However, the recalcitrant structure of DPC affects the yield of products in bioprocesses. To boost the accessibility of the structure as well as increase the soluble fraction of carbohydrates and facilitate further enzymatic hydrolysis, hydrothermal and dilute acid (0.5% (v/v) sulfuric acid) pretreatments as cost-effective and feasible methods were applied on DPC at relatively low temperatures (80, 100, 120 and 140 °C) and reaction times (60 and 90 min). The success in pretreatment was then evaluated by a post-enzymatic treatment using an enzyme cocktail of cellulases and hemicelluloses. Based on total accessible sugar with minimum produced inhibitors, an optimal operating condition was considered acid pretreatment at 120 °C for 90 min with a 55.02% increase in total sugar yield. To explore the potential use of pretreated DPC, an anaerobic digestion was conducted on untreated and acid-pretreated DPC at 120 °C for 90 min. The results showed that pretreatment increased the total bioproduct yield, including hydrogen, ethanol, and volatile fatty acid yields, by 59.75%. This demonstrates the significant impact of pretreatment on product yields in a bioprocess.


Subject(s)
Sulfuric Acids , Hydrolysis , Sulfuric Acids/chemistry , Ethanol/chemistry , Temperature , Acids/chemistry
15.
Pharmaceutics ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38931863

ABSTRACT

The aims of the present research include (1) optimization of extraction from Vaccinium myrtillus leaf waste via investigation of plant material:medium ratio, extraction medium, and extraction period, employing extractions at room and high temperatures, or using ultrasound and microwaves (M, HAE, UAE, and MAE, respectively), (2) physicochemical characterization, and (3) investigation of extract biological potential. The statistical analysis revealed that optimal levels of parameters for the greatest polyphenolic yield were a proportion of 1:30 g/mL, ethyl alcohol 50% (v/v) during 2 min of microwave irradiation. By LC-MS analysis, 29 phenolic components were detected; HAE showed the highest richness of almost all determined polyphenols, while chlorogenic acid and quercetin 3-O-glucuronide were dominant. All extracts showed a high inhibition of Staphylococcus aureus growth. The effect of different parameters on extracts' antioxidant capacity depended on the used tests. The extracts also showed a stimulative influence on keratinocyte viability and anti-inflammatory activity (proven in cell-based ELISA and erythrocyte stabilization assays). The extraction procedure significantly affected the extraction yield (MAE ≥ maceration ≥ UAE ≥ HAE), whereas conductivity, density, surface tension, and viscosity varied in a narrow range. The presented research provides evidence on the optimal extraction conditions and technique, chemical composition, and antioxidant, antimicrobial, anti-inflammatory, and keratinocyte viability properties of bilberry extracts for potential applications in pharmacy and cosmetics.

16.
Sci Total Environ ; 914: 169857, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190912

ABSTRACT

Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.


Subject(s)
Air Pollutants , Environmental Pollutants , Gases/chemistry , Sulfur/chemistry , Bioreactors
17.
Environ Technol ; 34(13-16): 2077-84, 2013.
Article in English | MEDLINE | ID: mdl-24350461

ABSTRACT

A bioreactor including encased digesting bacteria for biogas production was developed, and its performance in toxic media and under high organic loading rates (OLRs) was examined and compared with traditional digestion reactors. The bacteria (3 g) were encased and sealed in 3 x 6 cm2 PVDF (polyvinylidene fluoride) membranes with a pore size of 0.1 microm, and then several sachets were placed in the reactors. They were then examined in toxic medium containing up to 3% limonene as a model inhibitor in batch reactors, and OLRs of up to 20 g COD/L.day in semi-continuous digestions. The free and encased cells with an identical total bacterial concentration of 9 g in a medium containing 2% limonene produced at most 6.56 and 23.06 mL biogas per day, respectively. In addition, the digestion with free cells completely failed at an OLR of 7.5 gCOD/L.day, while the encased cells were still fully active with a loading of 15 g COD/L x day.


Subject(s)
Bacteria/metabolism , Biofuels , Bioreactors/microbiology , Cells, Immobilized/metabolism , Membranes, Artificial , Polyvinyls/chemistry , Anaerobiosis , Bacteria/chemistry , Bacteria/cytology , Bacteria/drug effects , Cells, Immobilized/chemistry , Cells, Immobilized/cytology , Culture Media , Cyclohexenes/chemistry , Cyclohexenes/metabolism , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/metabolism , Limonene , Sewage/microbiology , Terpenes/chemistry , Terpenes/metabolism
18.
Bioresour Technol ; 369: 128421, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462761

ABSTRACT

By utilizing their powerful metabolic versatility, filamentous fungi can be utilized in bioprocesses aimed at achieving circular economy. With the current digital transformation within the biomanufacturing sector, the interest of automating fungi-based systems has intensified. The purpose of this paper was therefore to review the potentials connected to the use of automation and artificial intelligence in fungi-based systems. Automation is characterized by the substitution of manual tasks with mechanized tools. Artificial intelligence is, on the other hand, a domain within computer science that aims at designing tools and machines with the capacity to execute functions that would usually require human aptitude. Process flexibility, enhanced data reliability and increased productivity are some of the benefits of integrating automation and artificial intelligence in fungi-based bioprocesses. One of the existing gaps that requires further investigation is the use of such data-based technologies in the production of food from fungi.


Subject(s)
Artificial Intelligence , Technology , Humans , Reproducibility of Results , Automation , Fungi
19.
Waste Manag ; 169: 382-391, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37531932

ABSTRACT

Brewer's spent grain (BSG) is a clean byproduct from the food sector, comprising 85% of the brewing process solid byproducts. BSG is mainly used as low-quality animal feed and often ends up in landfills due to its short shelf life. However, considering its abundant availability and high nutritional content, BSG holds the potential for biorefineries to produce valuable products. The recalcitrant nature of BSG poses a challenge, requiring pretreatment steps. Therefore, this study focused on valorizing BSG obtained from organosolv pretreatment by producing food- and feed-grade single-cell protein (SCP). The BSG was subject to organosolv pretreatment at 180C for 2 h with 50% v/v ethanol as solvent. Filamentous fungi N. intermedia and A. oryzae were cultivated on as-received and different fractions of organosolv-treated BSG to evaluate the effect of factors such as pretreatment, fungal strain, pretreated fraction content, and substrate loading on fungal biomass yield, biomass composition (protein content), and metabolite production. A. oryzae cultivation on all tested substrates yielded 7%-40% more biomass than N. intermedia. Cultivating A. oryzae on organosolv liquor resulted in the highest biomass protein content (44.8% ± 0.7%) with a fungal biomass concentration of 5.1 g/L. A three-fold increase in the substrate loading increased the ethanol-to-substrate yield by 50%, while protein content was decreased by 23%. Finally, a biorefinery concept was proposed to integrate the organosolv pretreatment of BSG with fungal cultivation for maximum yield of SCP while obtaining other products such as lignin and ethanol, providing a sustainable rout for managing BSG.


Subject(s)
Alcoholic Beverages , Edible Grain , Animals , Fermentation , Edible Grain/chemistry , Edible Grain/metabolism , Lignin/analysis , Ethanol/analysis , Ethanol/metabolism
20.
Food Sci Nutr ; 11(5): 2288-2297, 2023 May.
Article in English | MEDLINE | ID: mdl-37181303

ABSTRACT

In this study, the effects of different treatments of the oat slurry on the nutritional, functional, and sensorial properties of oat milk were evaluated. The sprouting and sprouting-acidic treatments have the highest oat milk yield (91.70%) and protein extraction yield (82.74%), respectively. The protein concentrations of alkali, sprouting-acidic, and α-amylase-alkali treatments were significantly (p < .05) higher than other treatments. The alkali treatments showed higher fat content (0.66%). In addition, acidic and alkali treatments in single or combined with other treatments showed the highest dry matter and energy value. The carbohydrate content of α-amylase-alkali treatment (4.35%) was higher than other treatments and also, all acidic treatments showed higher ash content (>1) compared to the other treatments. Furthermore, the sprouting-α-amylase and acidic-α-amylase showed the lowest starch (0.28%) and the highest reducing sugar content (3.15%) compared to the other treatments, respectively. Moreover, the α-amylase-alkali treatment showed the highest total phenolic content and antioxidant activity (342.67 mg GAE/L and 183.08 mg BHT eq/L, respectively). Furthermore, sensory evaluation of most treatments showed acceptable scores (≥7) for consumers, especially in the case of α-amylase, sprouting, and α-amylase-sprouting treatments. Results show that the different treatments had different effects on the nutritional, functional, and sensorial properties of oat milk. In conclusion, from the nutritional and functional point of view, the two-stage treatments were more effective than singular treatments on investigated factors proposing their application in functional plant milk preparation.

SELECTION OF CITATIONS
SEARCH DETAIL