Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Antimicrob Agents Chemother ; 68(4): e0108123, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376189

ABSTRACT

Extracellular bacterial metabolites have potential as markers of bacterial growth and resistance emergence but have not been evaluated in dynamic in vitro studies. We investigated the dynamic metabolomic footprint of a multidrug-resistant hypermutable Pseudomonas aeruginosa isolate exposed to ceftolozane/tazobactam as continuous infusion (4.5 g/day, 9 g/day) in a hollow-fiber infection model over 7-9 days in biological replicates (n = 5). Bacterial samples were collected at 0, 7, 23, 47, 71, 95, 143, 167, 191, and 215 h, the supernatant quenched, and extracellular metabolites extracted. Metabolites were analyzed via untargeted metabolomics, including hierarchical clustering and correlation with quantified total and resistant bacterial populations. The time-courses of five (of 1,921 detected) metabolites from enriched pathways were mathematically modeled. Absorbed L-arginine and secreted L-ornithine were highly correlated with the total bacterial population (r -0.79 and 0.82, respectively, P<0.0001). Ribose-5-phosphate, sedoheptulose-7-phosphate, and trehalose-6-phosphate correlated with the resistant subpopulation (0.64, 0.64, and 0.67, respectively, P<0.0001) and were likely secreted due to resistant growth overcoming oxidative and osmotic stress induced by ceftolozane/tazobactam. Using pharmacokinetic/pharmacodynamic-based transduction models, these metabolites were successfully modeled based on the total or resistant bacterial populations. The models well described the abundance of each metabolite across the differing time-course profiles of biological replicates, based on bacterial killing and, importantly, resistant regrowth. These proof-of-concept studies suggest that further exploration is warranted to determine the generalizability of these findings. The metabolites modeled here are not exclusive to bacteria. Future studies may use this approach to identify bacteria-specific metabolites correlating with resistance, which would ultimately be extremely useful for clinical translation.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Tazobactam/pharmacology , Cephalosporins/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial
2.
mSystems ; 9(5): e0009324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38606960

ABSTRACT

The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.


Subject(s)
Anti-Bacterial Agents , Metabolomics , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Metabolomics/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Cations/chemistry , Cations/metabolism , Cations/pharmacology
3.
Article in English | MEDLINE | ID: mdl-39107161

ABSTRACT

OBJECTIVES: Meropenem is commonly used against Pseudomonas aeruginosa. Traditionally, the time unbound antibiotic concentration exceeds the MIC (fT>MIC) is used to select carbapenem regimens. We aimed to characterize the effects of different baseline resistance mechanisms on bacterial killing and resistance emergence; evaluate whether fT>MIC can predict these effects; and, develop a novel Quantitative and Systems Pharmacology (QSP) model to describe the effects of baseline resistance mechanisms on the time-course of bacterial response. METHODS: Seven isogenic P. aeruginosa strains with a range of resistance mechanisms and MICs were used in 10-day hollow-fiber infection model studies. Meropenem pharmacokinetic profiles were simulated for various regimens (t1/2,meropenem = 1.5 h). All viable counts on drug-free, 3 × MIC, and 5 × MIC meropenem-containing agar across all strains, five regimens, and control (n = 90 profiles) were simultaneously subjected to QSP modeling. Whole genome sequencing was completed for total population samples and emergent resistant colonies at 239 h. RESULTS: Regimens achieving ≥98%fT>1×MIC suppressed resistance emergence of the mexR knockout strain. Even 100%fT>5 × MIC failed to achieve this against the strain with OprD loss and the ampD and mexR double-knockout strain. Baseline resistance mechanisms affected bacterial outcomes, even for strains with the same MIC. Genomic analysis revealed that pre-existing resistant subpopulations drove resistance emergence. During meropenem exposure, mutations in mexR were selected in strains with baseline oprD mutations, and vice versa, confirming these as major mechanisms of resistance emergence. Secondary mutations occurred in lysS or argS, coding for lysyl and arginyl tRNA synthetases, respectively. DISCUSSION: The QSP model well-characterized all bacterial outcomes of the seven strains simultaneously, which fT>MIC could not.

4.
Int J Antimicrob Agents ; 63(6): 107161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561094

ABSTRACT

OBJECTIVE: Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS: Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS: Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION: The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.


Subject(s)
Anti-Bacterial Agents , Aztreonam , Biofilms , Cystic Fibrosis , Drug Synergism , Pseudomonas Infections , Pseudomonas aeruginosa , Tobramycin , Whole Genome Sequencing , Tobramycin/administration & dosage , Tobramycin/pharmacology , Aztreonam/pharmacology , Aztreonam/administration & dosage , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Biofilms/drug effects , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Models, Theoretical , Drug Therapy, Combination
SELECTION OF CITATIONS
SEARCH DETAIL