Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4669-4679.e13, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34390643

ABSTRACT

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.


Subject(s)
Electrophysiological Phenomena , Sulfate Transporters/metabolism , Anions , Binding Sites , Chlorides/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Lipid Bilayers/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Protein Multimerization , Protein Stability , Salicylic Acid/metabolism , Structural Homology, Protein , Sulfate Transporters/chemistry , Sulfate Transporters/ultrastructure
2.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730852

ABSTRACT

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Subject(s)
Cells/metabolism , Energy Metabolism , Adaptation, Physiological/radiation effects , Adenosine Triphosphate/metabolism , Benzoquinones/metabolism , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cells/radiation effects , Chromatophores/metabolism , Cytochromes c2/metabolism , Diffusion , Electron Transport/radiation effects , Energy Metabolism/radiation effects , Environment , Hydrogen Bonding , Kinetics , Light , Molecular Dynamics Simulation , Phenotype , Proteins/metabolism , Rhodobacter sphaeroides/physiology , Rhodobacter sphaeroides/radiation effects , Static Electricity , Stress, Physiological/radiation effects , Temperature
3.
Cell ; 170(6): 1234-1246.e14, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28823560

ABSTRACT

AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, and pore properties. Here, we elucidate structures of the GluA2-TARP γ2 complex in the presence of the partial agonist kainate or the full agonist quisqualate together with a positive allosteric modulator or with quisqualate alone. We show how TARPs sculpt the ligand-binding domain gating ring, enhancing kainate potency and diminishing the ensemble of desensitized states. TARPs encircle the receptor ion channel, stabilizing M2 helices and pore loops, illustrating how TARPs alter receptor pore properties. Structural and computational analysis suggests the full agonist and modulator complex harbors an ion-permeable channel gate, providing the first view of an activated AMPA receptor.


Subject(s)
Calcium Channels/chemistry , Receptors, AMPA/chemistry , Animals , Cryoelectron Microscopy , Excitatory Amino Acid Agonists/chemistry , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/chemistry , Kainic Acid/pharmacology , Models, Molecular , Quisqualic Acid/chemistry , Quisqualic Acid/pharmacology , Rats , Receptors, AMPA/agonists
4.
Nature ; 632(8025): 672-677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112705

ABSTRACT

The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane2 (ß-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how ß-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors , Humans , Allosteric Site/drug effects , Cocaine/analogs & derivatives , Cocaine/chemistry , Cocaine/metabolism , Cocaine/pharmacology , Cryoelectron Microscopy , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/ultrastructure , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacology , Models, Molecular , Movement/drug effects , Protein Conformation/drug effects , Zinc/metabolism , Zinc/chemistry , Zinc/pharmacology
5.
Nature ; 630(8016): 429-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811738

ABSTRACT

Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.


Subject(s)
Anti-Bacterial Agents , Drug Discovery , Gastrointestinal Microbiome , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Symbiosis , Animals , Female , Humans , Male , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cell Line , Clostridioides difficile/drug effects , Clostridium Infections/microbiology , Clostridium Infections/drug therapy , Disease Models, Animal , Drug Design , Drug Resistance, Multiple, Bacterial , Gastrointestinal Microbiome/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Lipoproteins/metabolism , Mice, Inbred C57BL , Protein Transport/drug effects , Sepsis/microbiology , Sepsis/drug therapy , Substrate Specificity , Symbiosis/drug effects
6.
Nature ; 610(7933): 796-803, 2022 10.
Article in English | MEDLINE | ID: mdl-36224384

ABSTRACT

The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel1. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.


Subject(s)
Caenorhabditis elegans , Cryoelectron Microscopy , Ion Channels , Mechanotransduction, Cellular , Animals , Arrestins/chemistry , Arrestins/metabolism , Arrestins/ultrastructure , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/ultrastructure , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/metabolism , Ion Channels/ultrastructure , Lipids
7.
EMBO J ; 42(3): e111065, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36484366

ABSTRACT

Phospholipid extrusion by ABC subfamily A (ABCA) exporters is central to cellular physiology, although the specifics of the underlying substrate interactions and transport mechanisms remain poorly resolved at the molecular level. Here we report cryo-EM structures of lipid-embedded human ABCA7 in an open state and in a nucleotide-bound, closed state at resolutions between 3.6 and 4.0 Å. The former reveals an ordered patch of bilayer lipids traversing the transmembrane domain (TMD), while the latter reveals a lipid-free, closed TMD with a small extracellular opening. These structures offer a structural framework for both substrate entry and exit from the ABCA7 TMD and highlight conserved rigid-body motions that underlie the associated conformational transitions. Combined with functional analysis and molecular dynamics (MD) simulations, our data also shed light on lipid partitioning into the ABCA7 TMD and localized membrane perturbations that underlie ABCA7 function and have broader implications for other ABCA family transporters.


Subject(s)
ATP-Binding Cassette Transporters , Molecular Dynamics Simulation , Humans , ATP-Binding Cassette Transporters/chemistry , Biological Transport , Cryoelectron Microscopy , Phospholipids
8.
Nature ; 591(7849): 327-331, 2021 03.
Article in English | MEDLINE | ID: mdl-33597752

ABSTRACT

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Subject(s)
Amino Acid Transport System X-AG/chemistry , Amino Acid Transport System X-AG/metabolism , Chloride Channels/chemistry , Chloride Channels/metabolism , Hydrophobic and Hydrophilic Interactions , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/ultrastructure , Animals , Brain/metabolism , Chloride Channels/genetics , Chloride Channels/ultrastructure , Chlorides/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Excitatory Amino Acid Transporter 1/chemistry , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 1/ultrastructure , Female , Glutamic Acid/metabolism , Humans , Models, Molecular , Mutation , Oocytes , Protein Conformation , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 121(32): e2403324121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39052850

ABSTRACT

Proteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, nonequilibrium Green's function-density functional theory (NEGF-DFT), and unsupervised machine learning to understand the role of secondary structure on electron transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn or 310 helices) and a low-conductance state occurring for extended peptide structures. These results highlight the importance of helical conformations on electron transport in peptides. Conformer selection for the peptide structures is rationalized using principal component analysis of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonable qualitative agreement with experiments. Projected density of states calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides broad avenues for understanding the electronic properties of proteins.


Subject(s)
Molecular Dynamics Simulation , Peptides , Protein Structure, Secondary , Electron Transport , Peptides/chemistry , Peptides/metabolism , Hydrogen Bonding
10.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38452206

ABSTRACT

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Subject(s)
Chromatin , Proteasome Endopeptidase Complex , Transcription Factor RelA , Ubiquitination , Humans , Chromatin/metabolism , HEK293 Cells , Lysine/metabolism , Methylation , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
11.
Proc Natl Acad Sci U S A ; 120(29): e2304602120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37436958

ABSTRACT

The serotonin transporter (SERT) is a member of the SLC6 neurotransmitter transporter family that mediates serotonin reuptake at presynaptic nerve terminals. SERT is the target of both therapeutic antidepressant drugs and psychostimulant substances such as cocaine and methamphetamines, which are small molecules that perturb normal serotonergic transmission by interfering with serotonin transport. Despite decades of studies, important functional aspects of SERT such as the oligomerization state of native SERT and its interactions with potential proteins remain unresolved. Here, we develop methods to isolate SERT from porcine brain (pSERT) using a mild, nonionic detergent, utilize fluorescence-detection size-exclusion chromatography to investigate its oligomerization state and interactions with other proteins, and employ single-particle cryo-electron microscopy to elucidate the structures of pSERT in complexes with methamphetamine or cocaine, providing structural insights into psychostimulant recognition and accompanying pSERT conformations. Methamphetamine and cocaine both bind to the central site, stabilizing the transporter in an outward open conformation. We also identify densities attributable to multiple cholesterol or cholesteryl hemisuccinate (CHS) molecules, as well as to a detergent molecule bound to the pSERT allosteric site. Under our conditions of isolation, we find that pSERT is best described as a monomeric entity, isolated without interacting proteins, and is ensconced by multiple cholesterol or CHS molecules.


Subject(s)
Central Nervous System Stimulants , Cocaine , Methamphetamine , Animals , Swine , Serotonin Plasma Membrane Transport Proteins , Cryoelectron Microscopy , Detergents , Serotonin , Cocaine/pharmacology , Methamphetamine/pharmacology
12.
Proc Natl Acad Sci U S A ; 120(1): e2213437120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580587

ABSTRACT

ABCG2 is an ATP-binding cassette (ABC) transporter that extrudes a wide range of xenobiotics and drugs from the cell and contributes to multidrug resistance in cancer cells. Following our recent structural characterization of topotecan-bound ABCG2, here, we present cryo-EM structures of ABCG2 under turnover conditions in complex with a special modulator and slow substrate, tariquidar, in nanodiscs. The structures reveal that similar to topotecan, tariquidar induces two distinct ABCG2 conformations under turnover conditions (turnover-1 and turnover-2). µs-scale molecular dynamics simulations of drug-bound and apo ABCG2 in native-like lipid bilayers, in both topotecan- and tariquidar-bound states, characterize the ligand size as a major determinant of its binding stability. The simulations highlight direct lipid-drug interactions for the smaller topotecan, which exhibits a highly dynamic binding mode. In contrast, the larger tariquidar occupies most of the available volume in the binding pocket, thus leaving little space for lipids to enter the cavity and interact with it. Similarly, when simulating ABCG2 in the apo inward-open state, we also observe spontaneous penetration of phospholipids into the binding cavity. The captured phospholipid diffusion pathway into ABCG2 offers a putative general path to recruit any hydrophobic/amphiphilic substrates directly from the membrane. Our simulations also reveal that ABCG2 rejects cholesterol as a substrate, which is omnipresent in plasma membranes that contain ABCG2. At the same time, cholesterol is found to prohibit the penetration of phospholipids into ABCG2. These molecular findings have direct functional ramifications on ABCG2's function as a transporter.


Subject(s)
Drug Resistance, Multiple , Topotecan , Ligands , ATP-Binding Cassette Transporters/metabolism , Phospholipids , Cholesterol , Drug Resistance, Neoplasm
13.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211817

ABSTRACT

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Subject(s)
Oleic Acid , Peptides , Staphylococcus aureus , Cryoelectron Microscopy , Fatty Acids, Unsaturated , Lipid Bilayers/metabolism , Phosphates , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics
14.
Nat Chem Biol ; 19(2): 239-250, 2023 02.
Article in English | MEDLINE | ID: mdl-36229686

ABSTRACT

Membrane lipids control the cellular activity of kinases containing the Src homology 2 (SH2) domain through direct lipid-SH2 domain interactions. Here we report development of new nonlipidic small molecule inhibitors of the lipid-SH2 domain interaction that block the cellular activity of their host proteins. As a pilot study, we evaluated the efficacy of lipid-SH2 domain interaction inhibitors for spleen tyrosine kinase (Syk), which is implicated in hematopoietic malignancies, including acute myeloid leukemia (AML). An optimized inhibitor (WC36) specifically and potently suppressed oncogenic activities of Syk in AML cell lines and patient-derived AML cells. Unlike ATP-competitive Syk inhibitors, WC36 was refractory to de novo and acquired drug resistance due to its ability to block not only the Syk kinase activity, but also its noncatalytic scaffolding function that is linked to drug resistance. Collectively, our study shows that targeting lipid-protein interaction is a powerful approach to developing new small molecule drugs.


Subject(s)
Leukemia, Myeloid, Acute , Protein-Tyrosine Kinases , Humans , Protein-Tyrosine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Pilot Projects , src Homology Domains , Phosphorylation , Leukemia, Myeloid, Acute/drug therapy , Lipids , Syk Kinase/metabolism
15.
Nature ; 569(7754): 141-145, 2019 05.
Article in English | MEDLINE | ID: mdl-31019304

ABSTRACT

The serotonin transporter (SERT) regulates neurotransmitter homeostasis through the sodium- and chloride-dependent recycling of serotonin into presynaptic neurons1-3. Major depression and anxiety disorders are treated using selective serotonin reuptake inhibitors-small molecules that competitively block substrate binding and thereby prolong neurotransmitter action2,4. The dopamine and noradrenaline transporters, together with SERT, are members of the neurotransmitter sodium symporter (NSS) family. The transport activities of NSSs can be inhibited or modulated by cocaine and amphetamines2,3, and genetic variants of NSSs are associated with several neuropsychiatric disorders including attention deficit hyperactivity disorder, autism and bipolar disorder2,5. Studies of bacterial NSS homologues-including LeuT-have shown how their transmembrane helices (TMs) undergo conformational changes during the transport cycle, exposing a central binding site to either side of the membrane1,6-12. However, the conformational changes associated with transport in NSSs remain unknown. To elucidate structure-based mechanisms for transport in SERT we investigated its complexes with ibogaine, a hallucinogenic natural product with psychoactive and anti-addictive properties13,14. Notably, ibogaine is a non-competitive inhibitor of transport but displays competitive binding towards selective serotonin reuptake inhibitors15,16. Here we report cryo-electron microscopy structures of SERT-ibogaine complexes captured in outward-open, occluded and inward-open conformations. Ibogaine binds to the central binding site, and closure of the extracellular gate largely involves movements of TMs 1b and 6a. Opening of the intracellular gate involves a hinge-like movement of TM1a and the partial unwinding of TM5, which together create a permeation pathway that enables substrate and ion diffusion to the cytoplasm. These structures define the structural rearrangements that occur from the outward-open to inward-open conformations, and provide insight into the mechanism of neurotransmitter transport and ibogaine inhibition.


Subject(s)
Cryoelectron Microscopy , Ibogaine/chemistry , Ibogaine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/ultrastructure , Serotonin/metabolism , Binding Sites/drug effects , Binding, Competitive , Biological Transport/drug effects , Hallucinogens/chemistry , Hallucinogens/pharmacology , Humans , Models, Molecular , Protein Conformation/drug effects , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/genetics , Selective Serotonin Reuptake Inhibitors/chemistry , Structure-Activity Relationship
16.
Drug Resist Updat ; 73: 101066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387283

ABSTRACT

ABCG2 is an important ATP-binding cassette transporter impacting the absorption and distribution of over 200 chemical toxins and drugs. ABCG2 also reduces the cellular accumulation of diverse chemotherapeutic agents. Acquired somatic mutations in the phylogenetically conserved amino acids of ABCG2 might provide unique insights into its molecular mechanisms of transport. Here, we identify a tumor-derived somatic mutation (Q393K) that occurs in a highly conserved amino acid across mammalian species. This ABCG2 mutant seems incapable of providing ABCG2-mediated drug resistance. This was perplexing because it is localized properly and retained interaction with substrates and nucleotides. Using a conformationally sensitive antibody, we show that this mutant appears "locked" in a non-functional conformation. Structural modeling and molecular dynamics simulations based on ABCG2 cryo-EM structures suggested that the Q393K interacts with the E446 to create a strong salt bridge. The salt bridge is proposed to stabilize the inward-facing conformation, resulting in an impaired transporter that lacks the flexibility to readily change conformation, thereby disrupting the necessary communication between substrate binding and transport.


Subject(s)
ATP-Binding Cassette Transporters , Neoplasms , Humans , Animals , ATP-Binding Cassette Transporters/metabolism , Mutation , Drug Resistance , Neoplasms/drug therapy , Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Mammals/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
17.
Proc Natl Acad Sci U S A ; 119(28): e2119761119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35737823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein is the prime target for vaccines, diagnostics, and therapeutic antibodies against the virus. While anchored in the viral envelope, for effective virulence, the spike needs to maintain structural flexibility to recognize the host cell surface receptors and bind to them, a property that can heavily depend upon the dynamics of the unresolved domains, most prominently the stalk. Construction of the complete, membrane-bound spike model and the description of its dynamics are critical steps in understanding the inner working of this key element of the viral infection by SARS-CoV-2. Combining homology modeling, protein-protein docking, and molecular dynamics (MD) simulations, we have developed a full spike structure in a native membrane. Multimicrosecond MD simulations of this model, the longest known single trajectory of the full spike, reveal conformational dynamics employed by the protein to explore the surface of the host cell. In agreement with cryogenic electron microscopy (cryo-EM), three flexible hinges in the stalk allow for global conformational heterogeneity of spike in the fully glycosylated system mediated by glycan-glycan and glycan-lipid interactions. The dynamical range of the spike is considerably reduced in its nonglycosylated form, confining the area explored by the spike on the host cell surface. Furthermore, palmitoylation of the membrane domain amplifies the local curvature that may prime the fusion. We show that the identified hinge regions are highly conserved in SARS coronaviruses, highlighting their functional importance in enhancing viral infection, and thereby, provide points for discovery of alternative therapeutics against the virus.


Subject(s)
COVID-19 , Host Microbial Interactions , Protein Processing, Post-Translational , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Glycosylation , Humans , Polysaccharides , Protein Binding , Receptors, Cell Surface/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193963

ABSTRACT

Gram-negative bacteria pose a serious public health concern due to resistance to many antibiotics, caused by the low permeability of their outer membrane (OM). Effective antibiotics use porins in the OM to reach the interior of the cell; thus, understanding permeation properties of OM porins is instrumental to rationally develop broad-spectrum antibiotics. A functionally important feature of OM porins is undergoing open-closed transitions that modulate their transport properties. To characterize the molecular basis of these transitions, we performed an extensive set of molecular dynamics (MD) simulations of Escherichia coli OM porin OmpF. Markov-state analysis revealed that large-scale motion of an internal loop, L3, underlies the transition between energetically stable open and closed states. The conformation of L3 is controlled by H bonds between highly conserved acidic residues on the loop and basic residues on the OmpF ß-barrel. Mutation of key residues important for the loop's conformation shifts the equilibrium between open and closed states and regulates translocation of permeants (ions and antibiotics), as observed in the simulations and validated by our whole-cell accumulation assay. Notably, one mutant system G119D, which we find to favor the closed state, has been reported in clinically resistant bacterial strains. Overall, our accumulated ∼200 µs of simulation data (the wild type and mutants) along with experimental assays suggest the involvement of internal loop dynamics in permeability of OM porins and antibiotic resistance in Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/metabolism , Drug Resistance, Bacterial/physiology , Porins/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Gram-Negative Bacteria/metabolism , Microbial Sensitivity Tests , Models, Theoretical , Molecular Dynamics Simulation , Permeability , Porins/physiology , Porins/ultrastructure
19.
Trends Biochem Sci ; 45(3): 202-216, 2020 03.
Article in English | MEDLINE | ID: mdl-31813734

ABSTRACT

Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.


Subject(s)
Cryoelectron Microscopy , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Biological Transport , Crystallography, X-Ray , Membrane Transport Proteins/chemistry , Protein Conformation
20.
J Chem Inf Model ; 64(12): 4822-4834, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38844760

ABSTRACT

Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human ß2-adrenergic receptor (ß2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.


Subject(s)
Cholesterol , Molecular Dynamics Simulation , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Protein Binding , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Diffusion , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL