Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Neurol ; 24(1): 310, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232641

ABSTRACT

BACKGROUND: Pathogenic variants in Gap junction protein beta 1 (GJB1), which encodes Connexin 32, are known to cause X-linked Charcot-Marie-Tooth disease (CMTX), the second most common form of CMT. CMTX presents with the following five central nervous systems (CNS) phenotypes: subclinical electrophysiological abnormalities, mild fixed abnormalities on neurological examination and/or imaging, transient CNS dysfunction, cognitive impairment, and persistent CNS manifestations. CASE PRESENTATION: A 40-year-old Japanese male showed CNS symptoms, including nystagmus, prominent spastic paraplegia, and mild cerebellar ataxia, accompanied by subclinical peripheral neuropathy. Brain magnetic resonance imaging revealed hyperintensities in diffusion-weighted images of the white matter, particularly along the pyramidal tract, which had persisted since childhood. Nerve conduction assessment showed a mild decrease in motor conduction velocity, and auditory brainstem responses beyond wave II were absent. Peripheral and central conduction times in somatosensory evoked potentials elicited by stimulation of the median nerve were prolonged. Genetic analysis identified a hemizygous GJB1 variant, NM_000166.6:c.520C > T p.Pro174Ser. CONCLUSIONS: The patient in the case described here, with a GJB1 p.Pro174Ser variant, presented with a unique CNS-dominant phenotype, characterized by spastic paraplegia and persistent extensive leukoencephalopathy, rather than CMTX. Similar phenotypes have also been observed in patients with GJC2 and CLCN2 variants, likely because of the common function of these genes in regulating ion and water balance, which is essential for maintaining white matter function. CMTX should be considered within the spectrum of GJB1-related disorders, which can include patients with predominant CNS symptoms, some of which can potentially be classified as a new type of spastic paraplegia.


Subject(s)
Connexins , Gap Junction beta-1 Protein , Leukoencephalopathies , Phenotype , Spastic Paraplegia, Hereditary , Humans , Male , Adult , Connexins/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/physiopathology , Leukoencephalopathies/diagnostic imaging , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/physiopathology , Spastic Paraplegia, Hereditary/diagnosis
2.
Sci Rep ; 14(1): 2210, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278860

ABSTRACT

Cochlear melanocytes are intermediate cells in the stria vascularis that generate endocochlear potentials required for auditory function. Human PAX3 mutations cause Waardenburg syndrome and abnormalities of skin and retinal melanocytes, manifested as congenital hearing loss (~ 70%) and hypopigmentation of skin, hair and eyes. However, the underlying mechanism of hearing loss remains unclear. Cochlear melanocytes in the stria vascularis originated from Pax3-traced melanoblasts and Plp1-traced Schwann cell precursors, both of which derive from neural crest cells. Here, using a Pax3-Cre knock-in mouse that allows lineage tracing of Pax3-expressing cells and disruption of Pax3, we found that Pax3 deficiency causes foreshortened cochlea, malformed vestibular apparatus, and neural tube defects. Lineage tracing and in situ hybridization show that Pax3+ derivatives contribute to S100+, Kir4.1+ and Dct+ melanocytes (intermediate cells) in the developing stria vascularis, all of which are significantly diminished in Pax3 mutant animals. Taken together, these results suggest that Pax3 is required for the development of neural crest cell-derived cochlear melanocytes, whose absence may contribute to congenital hearing loss of Waardenburg syndrome in humans.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Waardenburg Syndrome , Mice , Animals , Humans , Waardenburg Syndrome/genetics , Cochlea , Stria Vascularis , Hearing Loss, Sensorineural/genetics , Melanocytes , PAX3 Transcription Factor/genetics
3.
Res Sq ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333245

ABSTRACT

Cochlear melanocytes are intermediate cells in the stria vascularis that generate endocochlear potentials required for auditory function. Human PAX3 mutations cause Waardenburg syndrome and abnormalities of melanocytes, manifested as congenital hearing loss and hypopigmentation of skin, hair and eyes. However, the underlying mechanism of hearing loss remains unclear. During development, cochlear melanocytes in the stria vascularis are dually derived from Pax3-Cre+ melanoblasts migrating from neuroepithelial cells including neural crest cells and Plp1+ Schwann cell precursors originated from also neural crest cells, differentiating in a basal-apical manner. Here, using a Pax3-Cre mouse line, we found that Pax3 deficiency causes foreshortened cochlea, malformed vestibular apparatus, and neural tube defects. Lineage tracing and in situ hybridization show that Pax3-Cre derivatives contribute to S100+ , Kir4.1+ and Dct+ melanocytes (intermediate cells) in the developing stria vascularis, all significantly diminished in Pax3 mutant animals. Taken together, these results suggest that Pax3 is required for the development of neural crest cell-derived cochlear melanocytes, whose absence may contribute to congenital hearing loss of Waardenburg syndrome in human.

SELECTION OF CITATIONS
SEARCH DETAIL