Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 50(2): 348-361.e4, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30737145

ABSTRACT

NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs in vivo. Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.


Subject(s)
I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Thymocytes/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , I-kappa B Kinase/genetics , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Thymocytes/cytology , Thymocytes/drug effects , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/pharmacology
2.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30076102

ABSTRACT

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Subject(s)
Kupffer Cells/cytology , Liver X Receptors/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Lineage/immunology , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Kupffer Cells/immunology , Liver/cytology , Liver X Receptors/metabolism , Lung/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
3.
Genes Dev ; 33(1-2): 49-54, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30602440

ABSTRACT

Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation, causing parental origin-specific monoallelic gene expression. Zinc finger protein 57 (ZFP57) is critical for maintenance of this epigenetic memory during post-fertilization reprogramming, yet incomplete penetrance of ZFP57 mutations in humans and mice suggests additional effectors. We reveal that ZNF445/ZFP445, which we trace to the origins of imprinting, binds imprinting control regions (ICRs) in mice and humans. In mice, ZFP445 and ZFP57 act together, maintaining all but one ICR in vivo, whereas earlier embryonic expression of ZNF445 and its intolerance to loss-of-function mutations indicate greater importance in the maintenance of human imprints.


Subject(s)
DNA Methylation/genetics , Genomic Imprinting/genetics , Kruppel-Like Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , Conserved Sequence , Embryonic Stem Cells , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Repressor Proteins , Transcription Factors/genetics
4.
PLoS Genet ; 18(4): e1010186, 2022 04.
Article in English | MEDLINE | ID: mdl-35482825

ABSTRACT

At interphase, de-condensed chromosomes have a non-random three-dimensional architecture within the nucleus, however, little is known about the extent to which nuclear organisation might influence expression or vice versa. Here, using imprinting as a model, we use 3D RNA- and DNA-fluorescence-in-situ-hybridisation in normal and mutant mouse embryonic stem cell lines to assess the relationship between imprinting control, gene expression and allelic distance from the nuclear periphery. We compared the two parentally inherited imprinted domains at the Dlk1-Dio3 domain and find a small but reproducible trend for the maternally inherited domain to be further away from the periphery however we did not observe an enrichment of inactive alleles in the immediate vicinity of the nuclear envelope. Using Zfp57KO ES cells, which harbour a paternal to maternal epigenotype switch, we observe that expressed alleles are significantly further away from the nuclear periphery. However, within individual nuclei, alleles closer to the periphery are equally likely to be expressed as those further away. In other words, absolute position does not predict expression. Taken together, this suggests that whilst stochastic activation can cause subtle shifts in localisation for this locus, there is no dramatic relocation of alleles upon gene activation. Our results suggest that transcriptional activity, rather than the parent-of-origin, defines subnuclear localisation at an endogenous imprinted domain.


Subject(s)
Calcium-Binding Proteins , Genomic Imprinting , Iodide Peroxidase , Membrane Proteins , Alleles , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression , Genomic Imprinting/genetics , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Parents
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105800

ABSTRACT

Apoptosis is widely believed to be crucial for epithelial cell death and shedding in the intestine, thereby shaping the overall architecture of the gastrointestinal tract, but also regulating tolerance induction, pinpointing a role of apoptosis intestinal epithelial cell (IEC) turnover and maintenance of barrier function, and in maintaining immune homeostasis. To experimentally address this concept, we generated IEC-specific knockout mice that lack both executioner caspase-3 and caspase-7 (Casp3/7ΔIEC), which are the converging point of the extrinsic and intrinsic apoptotic pathway. Surprisingly, the overall architecture, cellular landscape, and proliferation rate remained unchanged in these mice. However, nonapoptotic cell extrusion was increased in Casp3/7ΔIEC mice, compensating apoptosis deficiency, maintaining the same physiological level of IEC shedding. Microbiome richness and composition stayed unaffected, bearing no sign of dysbiosis. Transcriptome and single-cell RNA sequencing analyses of IECs and immune cells revealed no differences in signaling pathways of differentiation and inflammation. These findings demonstrate that during homeostasis, apoptosis per se is dispensable for IEC turnover at the top of intestinal villi intestinal tissue dynamics, microbiome, and immune cell composition.


Subject(s)
Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , Epithelial Cells/enzymology , Homeostasis , Intestinal Mucosa/enzymology , Signal Transduction , Animals , Caspase 3/genetics , Caspase 7/genetics , Mice , Mice, Transgenic
6.
Crit Care Med ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949476

ABSTRACT

OBJECTIVES: In sepsis treatment, antibiotics are crucial, but overuse risks development of antibiotic resistance. Recent guidelines recommended the use of procalcitonin to guide antibiotic cessation, but solid evidence is insufficient. Recently, concerns were raised that this strategy would increase recurrence. Additionally, optimal protocol or difference from the commonly used C-reactive protein (CRP) are uncertain. We aimed to compare the effectiveness and safety of procalcitonin- or CRP-guided antibiotic cessation strategies with standard of care in sepsis. DATA SOURCES: A systematic search of PubMed, Embase, CENTRAL, Igaku Chuo Zasshi, ClinicalTrials.gov, and World Health Organization International Clinical Trials Platform. STUDY SELECTION: Randomized controlled trials involving adults with sepsis in intensive care. DATA EXTRACTION: A systematic review with network meta-analyses was performed. The Grading of Recommendations, Assessments, Developments, and Evaluation method was used to assess certainty. DATA SYNTHESIS: Eighteen studies involving 5023 participants were included. Procalcitonin-guided and CRP-guided strategies shortened antibiotic treatment (-1.89 days [95% CI, -2.30 to -1.47], -2.56 days [95% CI, -4.21 to -0.91]) with low- to moderate-certainty evidence. In procalcitonin-guided strategies, this benefit was consistent even in subsets with shorter baseline antimicrobial duration (7-10 d) or in Sepsis-3, and more pronounced in procalcitonin cutoff of "0.5 µg/L and 80% reduction." No benefit was observed when monitoring frequency was less than half of the initial 10 days. Procalcitonin-guided strategies lowered mortality (-27 per 1000 participants [95% CI, -45 to -7]) and this was pronounced in Sepsis-3, but CRP-guided strategies led to no difference in mortality. Recurrence did not increase significantly with either strategy (very low to low certainty). CONCLUSIONS: In sepsis, procalcitonin- or CRP-guided antibiotic discontinuation strategies may be beneficial and safe. In particular, the usefulness of procalcitonin guidance for current Sepsis-3, where antimicrobials are used for more than 7 days, was supported. Well-designed studies are needed focusing on monitoring protocol and recurrence.

7.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38603629

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Subject(s)
Cellular Senescence , Granulosa Cells , Polycystic Ovary Syndrome , Quercetin , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Cellular Senescence/drug effects , Humans , Animals , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Quercetin/pharmacology , Mice , Senescence-Associated Secretory Phenotype , Adult , Dasatinib/pharmacology , Disease Models, Animal , Senotherapeutics/pharmacology , Hyperandrogenism/pathology , Hyperandrogenism/metabolism , Interleukin-6/metabolism , Dehydroepiandrosterone/pharmacology
8.
BMC Infect Dis ; 24(1): 518, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783190

ABSTRACT

BACKGROUND: It is important to determine the prevalence and prognosis of community-acquired infection (CAI) and nosocomial infection (NI) to develop treatment strategies and appropriate medical policies in aging society. METHODS: Patients hospitalized between January 2010 and December 2019, for whom culture tests were performed and antibiotics were administered, were selected using a national claims-based database. The annual trends in incidence and in-hospital mortality were calculated and evaluated by dividing the patients into four age groups. RESULTS: Of the 73,962,409 inpatients registered in the database, 9.7% and 4.7% had CAI and NI, respectively. These incidences tended to increase across the years in both the groups. Among the patients hospitalized with infectious diseases, there was a significant increase in patients aged ≥ 85 years (CAI: + 1.04%/year and NI: + 0.94%/year, P < 0.001), while there was a significant decrease in hospitalization of patients aged ≤ 64 years (CAI: -1.63%/year and NI: -0.94%/year, P < 0.001). In-hospital mortality was significantly higher in the NI than in the CAI group (CAI: 8.3%; NI: 14.5%, adjusted mean difference 4.7%). The NI group had higher organ support, medical cost per patient, and longer duration of hospital stay. A decreasing trend in mortality was observed in both the groups (CAI: -0.53%/year and NI: -0.72%/year, P < 0.001). CONCLUSION: The present analysis of a large Japanese claims database showed that NI is a significant burden on hospitalized patients in aging societies, emphasizing the need to address particularly on NI.


Subject(s)
Community-Acquired Infections , Cross Infection , Databases, Factual , Hospital Mortality , Humans , Japan/epidemiology , Aged , Male , Female , Community-Acquired Infections/mortality , Community-Acquired Infections/epidemiology , Middle Aged , Aged, 80 and over , Cross Infection/mortality , Cross Infection/epidemiology , Incidence , Adult , Hospitalization/statistics & numerical data , Young Adult , Adolescent
9.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139022

ABSTRACT

Young female cancer patients can develop chemotherapy-induced primary ovarian insufficiency (POI). Cyclophosphamide (Cy) is one of the most widely used chemotherapies and has the highest risk of damaging the ovaries. Recent studies elucidated the pivotal roles of cellular senescence, which is characterized by permanent cell growth arrest, in the pathologies of various diseases. Moreover, several promising senolytics, including dasatinib and quercetin (DQ), which remove senescent cells, are being developed. In the present study, we investigated whether cellular senescence is involved in Cy-induced POI and whether DQ treatment rescues Cy-induced ovarian damage. Expression of the cellular senescence markers p16, p21, p53, and γH2AX was upregulated in granulosa cells of POI mice and in human granulosa cells treated with Cy, which was abrogated by DQ treatment. The administration of Cy decreased the numbers of primordial and primary follicles, with a concomitant increase in the ratio of growing to dormant follicles, which was partially rescued by DQ. Moreover, DQ treatment significantly improved the response to ovulation induction and fertility in POI mice by extending reproductive life. Thus, cellular senescence plays critical roles in Cy-induced POI, and targeting senescent cells with senolytics, such as DQ, might be a promising strategy to protect against Cy-induced ovarian damage.


Subject(s)
Primary Ovarian Insufficiency , Humans , Mice , Female , Animals , Primary Ovarian Insufficiency/pathology , Senotherapeutics , Cyclophosphamide/toxicity , Dasatinib/adverse effects , Cellular Senescence
10.
FASEB J ; 35(11): e21971, 2021 11.
Article in English | MEDLINE | ID: mdl-34653284

ABSTRACT

It has been recently recognized that prenatal androgen exposure is involved in the development of polycystic ovary syndrome (PCOS) in adulthood. In addition, the gut microbiome in adult patients and rodents with PCOS differs from that of healthy individuals. Moreover, recent studies have suggested that the gut microbiome may play a causative role in the pathogenesis of PCOS. We wondered whether prenatal androgen exposure induces gut microbial dysbiosis early in life and is associated with the development of PCOS in later life. To test this hypothesis, we studied the development of PCOS-like phenotypes in prenatally androgenized (PNA) female mice and compared the gut microbiome of PNA and control offspring from 4 to 16 weeks of age. PNA offspring showed a reproductive phenotype from 6 weeks and a metabolic phenotype from 12 weeks of age. The α-diversity of the gut microbiome of the PNA group was higher at 8 weeks and lower at 12 and 16 weeks of age, and the ß-diversity differed from control at 8 weeks. However, a significant difference in the composition of gut microbiome between the PNA and control groups was already apparent at 4 weeks. Allobaculum and Roseburia were less abundant in PNA offspring, and may therefore be targets for future interventional studies. In conclusion, abnormalities in the gut microbiome appear as early as or even before PCOS-like phenotypes develop in PNA mice. Thus, the gut microbiome in early life is a potential target for the prevention of PCOS in later life.


Subject(s)
Androgens/metabolism , Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Prenatal Exposure Delayed Effects/microbiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/microbiology , Pregnancy
11.
J Infect Chemother ; 28(4): 532-538, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34973877

ABSTRACT

INTRODUCTION: The purpose of this study was to explore factors influencing meropenem pharmacokinetics (PKs) in critically ill patients by developing a population PK model and to determine the optimal dosing strategy. METHODS: This prospective observational study involved 12 critically ill patients admitted to the intensive care unit and treated with meropenem 1 g infused over 1 h every 8 h. Blood samples were collected on days 1, 2, and 5 immediately prior to dosing, and at 1, 2, 4, and 6 h after the start of infusion. Population PK parameters were estimated using nonlinear mixed-effects model software. RESULTS: Meropenem PK was adequately described using a two-compartment model. Typical values of total and inter-compartmental clearance were 9.30 L/h and 9.70 L/h, respectively, and the central and peripheral compartment volumes of distribution were 12.61 L and 7.80 L, respectively. C-reactive protein (CRP) was identified as significant covariate affecting total meropenem clearance. The probability of target attainment (PTA) predicted by Monte Carlo simulations varied according to the patients' CRP. The PTA of 100% time above the minimum inhibitory concentration ≤2 mg/L for bacteria was achieved after a dose of 1 and 2 g infused over 4 h every 8 h in patients with CRP of 30 and 5 mg/dL, respectively. CONCLUSION: The findings of this study suggest that CRP might be helpful in managing meropenem dosing in critically ill patients. Higher doses and extended infusion may be required to achieve optimal pharmacodynamic targets.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Anti-Bacterial Agents/pharmacology , Humans , Inflammation/drug therapy , Meropenem , Microbial Sensitivity Tests , Monte Carlo Method
12.
Mol Hum Reprod ; 27(1)2021 01 22.
Article in English | MEDLINE | ID: mdl-33543293

ABSTRACT

Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary, activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contributes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development of small molecules that target the UPR, represents a promising therapeutic strategy.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/physiology , Ovary/physiology , Animals , Cellular Microenvironment , Female , Humans , Ovarian Diseases/physiopathology , Unfolded Protein Response
13.
Mol Hum Reprod ; 27(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33493289

ABSTRACT

Recent studies have uncovered the critical role of aryl hydrocarbon receptor (AHR) in various diseases, including obesity and cancer progression, independent of its previously identified role as a receptor for endocrine-disrupting chemicals (EDCs). We previously showed that endoplasmic reticulum (ER) stress, a newly recognized local factor in the follicular microenvironment, is activated in granulosa cells from patients with polycystic ovary syndrome (PCOS) and a mouse model of the disease. By affecting diverse functions of granulosa cells, ER stress contributes to PCOS pathology. We hypothesized that expression of AHR and activation of its downstream signaling were upregulated by ER stress in granulosa cells, irrespective of the presence of EDCs, thereby promoting PCOS pathogenesis. In this study, we found that AHR, AHR nuclear translocator (ARNT), and AHR target gene cytochrome P450 1B1 (CYP1B1) were upregulated in the granulosa cells of PCOS patients and model mice. We examined CYP1B1 as a representative AHR target gene. AHR and ARNT were upregulated by ER stress in human granulosa-lutein cells (GLCs), resulting in an increase in the expression and activity of CYP1B1. Administration of the AHR antagonist CH223191 to PCOS mice restored estrous cycling and decreased the number of atretic antral follicles, concomitant with downregulation of AHR and CYP1B1 in granulosa cells. Taken together, our findings indicate that AHR activated by ER stress in the follicular microenvironment contributes to PCOS pathology, and that AHR represents a novel therapeutic target for PCOS.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Endoplasmic Reticulum Stress , Granulosa Cells/metabolism , Polycystic Ovary Syndrome/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Adult , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Azo Compounds/pharmacology , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/genetics , Case-Control Studies , Cells, Cultured , Cytochrome P-450 CYP1B1/metabolism , Disease Models, Animal , Estrous Cycle/metabolism , Female , Granulosa Cells/drug effects , Granulosa Cells/pathology , Humans , Mice, Inbred BALB C , Middle Aged , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Pyrazoles/pharmacology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Up-Regulation , Young Adult
14.
Crit Care ; 25(1): 338, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34530884

ABSTRACT

BACKGROUND: Trends in the incidence and outcomes of sepsis using a Japanese nationwide database were investigated. METHODS: This was a retrospective cohort study. Adult patients, who had both presumed serious infections and acute organ dysfunction, between 2010 and 2017 were extracted using a combined method of administrative and electronic health record data from the Japanese nationwide medical claim database, which covered 71.5% of all acute care hospitals in 2017. Presumed serious infection was defined using blood culture test records and antibiotic administration. Acute organ dysfunction was defined using records of diagnosis according to the international statistical classification of diseases and related health problems, 10th revision, and records of organ support. The primary outcomes were the annual incidence of sepsis and death in sepsis per 1000 inpatients. The secondary outcomes were in-hospital mortality rate and length of hospital stay in patients with sepsis. RESULTS: The analyzed dataset included 50,490,128 adult inpatients admitted between 2010 and 2017. Of these, 2,043,073 (4.0%) patients had sepsis. During the 8-year period, the annual proportion of patients with sepsis across inpatients significantly increased (slope = + 0.30%/year, P < 0.0001), accounting for 4.9% of the total inpatients in 2017. The annual death rate of sepsis per 1000 inpatients significantly increased (slope = + 1.8/1000 inpatients year, P = 0.0001), accounting for 7.8 deaths per 1000 inpatients in 2017. The in-hospital mortality rate and median (interquartile range) length of hospital stay significantly decreased (P < 0.001) over the study period and were 18.3% and 27 (15-50) days in 2017, respectively. CONCLUSIONS: The Japanese nationwide data indicate that the annual incidence of sepsis and death in inpatients with sepsis significantly increased; however, the annual mortality rates and length of hospital stay in patients with sepsis significantly decreased. The increasing incidence of sepsis and death in sepsis appear to be a significant and ongoing issue.


Subject(s)
Hospital Mortality/trends , Sepsis/diagnosis , Sepsis/mortality , Aged , Aged, 80 and over , Female , Hospitalization/trends , Humans , Incidence , Japan/epidemiology , Male , Middle Aged , Registries/statistics & numerical data , Sepsis/epidemiology
15.
Mol Hum Reprod ; 26(1): 40-52, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31869409

ABSTRACT

Endometriosis exerts detrimental effects on ovarian physiology and compromises follicular health. Granulosa cells from patients with endometriosis are characterized by increased apoptosis, as well as high oxidative stress. Endoplasmic reticulum (ER) stress, a local factor closely associated with oxidative stress, has emerged as a critical regulator of ovarian function. We hypothesized that ER stress is activated by high oxidative stress in granulosa cells in ovaries with endometrioma and that this mediates oxidative stress-induced apoptosis. Human granulosa-lutein cells (GLCs) from patients with endometrioma expressed high levels of mRNAs associated with the unfolded protein response (UPR). In addition, the levels of phosphorylated ER stress sensor proteins, inositol-requiring enzyme 1 (IRE1) and double-stranded RNA-activated protein kinase-like ER kinase (PERK), were elevated in granulosa cells from patients with endometrioma. Given that ER stress results in phosphorylation of ER stress sensor proteins and induces UPR factors, these findings indicate that these cells were under ER stress. H2O2, an inducer of oxidative stress, increased expression of UPR-associated mRNAs in cultured human GLCs, and this effect was abrogated by pretreatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor in clinical use. Treatment with H2O2 increased apoptosis and the activity of the pro-apoptotic factors caspase-8 and caspase-3, both of which were attenuated by TUDCA. Our findings suggest that activated ER stress induced by high oxidative stress in granulosa cells in ovaries with endometrioma mediates apoptosis of these cells, leading to ovarian dysfunction in patients with endometriosis.


Subject(s)
Apoptosis/genetics , Endometriosis/genetics , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Protein Serine-Threonine Kinases/genetics , eIF-2 Kinase/genetics , Adult , Apoptosis/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Endometriosis/metabolism , Endometriosis/pathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoribonucleases/metabolism , Female , Gene Expression Regulation , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Hydrogen Peroxide/pharmacology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Oxidative Stress , Primary Cell Culture , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Taurochenodeoxycholic Acid/pharmacology , Unfolded Protein Response , eIF-2 Kinase/metabolism
16.
Immunity ; 35(4): 493-5, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22035842

ABSTRACT

In this issue of Immunity, Bonnet et al. (2011) show that skin-specific ablation of the adaptor protein FADD sensitizes keratinocytes to RIPK3-dependent necrotic cell death, which leads to severe skin inflammation.

17.
Immunity ; 35(6): 908-18, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22195746

ABSTRACT

Engagement of tumor necrosis factor receptor 1 signals two diametrically opposed pathways: survival-inflammation and cell death. An additional switch decides, depending on the cellular context, between caspase-dependent apoptosis and RIP kinase (RIPK)-mediated necrosis, also termed necroptosis. We explored the contribution of both cell death pathways in TNF-induced systemic inflammatory response syndrome (SIRS). Deletion of apoptotic executioner caspases (caspase-3 or -7) or inflammatory caspase-1 had no impact on lethal SIRS. However, deletion of RIPK3 conferred complete protection against lethal SIRS and reduced the amounts of circulating damage-associated molecular patterns. Pretreatment with the RIPK1 kinase inhibitor, necrostatin-1, provided a similar effect. These results suggest that RIPK1-RIPK3-mediated cellular damage by necrosis drives mortality during TNF-induced SIRS. RIPK3 deficiency also protected against cecal ligation and puncture, underscoring the clinical relevance of RIPK kinase inhibition in sepsis and identifying components of the necroptotic pathway that are potential therapeutic targets for treatment of SIRS and sepsis.


Subject(s)
Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Systemic Inflammatory Response Syndrome/enzymology , Animals , Apoptosis/drug effects , Caspases/metabolism , Cecal Diseases/genetics , Cecal Diseases/pathology , Gene Deletion , Imidazoles/administration & dosage , Imidazoles/pharmacology , Indoles/administration & dosage , Indoles/pharmacology , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/pathology , Kaplan-Meier Estimate , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/mortality , Tumor Necrosis Factor-alpha/pharmacology
18.
Ther Drug Monit ; 42(4): 588-594, 2020 08.
Article in English | MEDLINE | ID: mdl-32049890

ABSTRACT

BACKGROUND: The aim of this study was to conduct a population pharmacokinetic (PK) analysis of meropenem and to explore the optimal dosing strategy for meropenem in critically ill patients with acute kidney injury receiving treatment with continuous hemodiafiltration (CHDF). METHODS: Blood samples were obtained on days 1, 2, and 5 after the start of meropenem administration, immediately before dosing, and at 1, 2, 6, and 8 hours after dosing. Population PK model analysis was performed and concentration-time profiles were simulated using the Nonlinear Mixed Effects Model software. RESULTS: Twenty-one patients receiving CHDF in our intensive care unit were enrolled and 350 serum concentration-time data points were obtained. The PKs of meropenem were best described using a 2-compartment model. Typical total and intercompartmental clearance values were 4.22 L/h and 7.84 L/h, respectively, whereas the central and peripheral compartment volumes of distribution were 14.82 L and 11.75 L, respectively. Estimated glomerular filtration rate was identified as a significant covariate of meropenem total clearance. In simulations of patients with renal failure receiving CHDF, the dose was affected by estimated glomerular filtration rate; a dose of 0.5 g every 8 hours or 1 g every 12 hours showed the probability of target attainment of achieving 100% time above the minimum inhibitory concentration for bacteria with a minimum inhibitory concentration ≤2 mg/L. CONCLUSIONS: A population PK model was developed for meropenem in critically ill patients with acute kidney injury receiving CHDF. Our results indicated that a meropenem dosage of 0.5 g every 8 hours or 1 g every 12 hours was suitable in this population and for susceptible bacteria.


Subject(s)
Acute Kidney Injury/metabolism , Meropenem/pharmacokinetics , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacokinetics , Critical Illness , Female , Hemodiafiltration/methods , Humans , Infusions, Intravenous/methods , Intensive Care Units , Male , Metabolic Clearance Rate/physiology , Microbial Sensitivity Tests/methods , Middle Aged , Prospective Studies , Renal Dialysis/methods , Young Adult
19.
Nature ; 513(7516): 95-9, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25186904

ABSTRACT

Receptor interacting protein kinase 1 (RIPK1) has an essential role in the signalling triggered by death receptors and pattern recognition receptors. RIPK1 is believed to function as a node driving NF-κB-mediated cell survival and inflammation as well as caspase-8 (CASP8)-dependent apoptotic or RIPK3/MLKL-dependent necroptotic cell death. The physiological relevance of this dual function has remained elusive because of the perinatal death of RIPK1 full knockout mice. To circumvent this problem, we generated RIPK1 conditional knockout mice, and show that mice lacking RIPK1 in intestinal epithelial cells (IECs) spontaneously develop severe intestinal inflammation associated with IEC apoptosis leading to early death. This early lethality was rescued by antibiotic treatment, MYD88 deficiency or tumour-necrosis factor (TNF) receptor 1 deficiency, demonstrating the importance of commensal bacteria and TNF in the IEC Ripk1 knockout phenotype. CASP8 deficiency, but not RIPK3 deficiency, rescued the inflammatory phenotype completely, indicating the indispensable role of RIPK1 in suppressing CASP8-dependent apoptosis but not RIPK3-dependent necroptosis in the intestine. RIPK1 kinase-dead knock-in mice did not exhibit any sign of inflammation, suggesting that RIPK1-mediated protection resides in its kinase-independent platform function. Depletion of RIPK1 in intestinal organoid cultures sensitized them to TNF-induced apoptosis, confirming the in vivo observations. Unexpectedly, TNF-mediated NF-κB activation remained intact in these organoids. Our results demonstrate that RIPK1 is essential for survival of IECs, ensuring epithelial homeostasis by protecting the epithelium from CASP8-mediated IEC apoptosis independently of its kinase activity and NF-κB activation.


Subject(s)
Apoptosis , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/metabolism , Homeostasis , Intestinal Mucosa/metabolism , Intestines/cytology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Caspase 8/genetics , Caspase 8/metabolism , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelium/drug effects , Epithelium/pathology , Female , Gene Deletion , Homeostasis/drug effects , Inflammation/metabolism , Inflammation/pathology , Intestines/drug effects , Intestines/pathology , Male , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , NF-kappa B/metabolism , Necrosis , Organoids/cytology , Organoids/drug effects , Organoids/enzymology , Organoids/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Survival Analysis , Tumor Necrosis Factors/pharmacology
20.
J Artif Organs ; 23(1): 54-61, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31584110

ABSTRACT

The patients with respiratory failure need high tidal volume by mechanical ventilation, which lead to the ventilator-induced lung injury. We developed an extracorporeal lung and renal assist device (ELRAD), comprising acid infusion, membrane lung, continuous hemodiafiltration and alkaline infusion. To evaluate this system, we conducted in vivo studies using experimental swine which were connected to the new system. In vivo experiments consist of four protocols; baseline = hemodiafiltration only (no O2 gas flow to membrane lung); membrane lung = "Baseline" plus O2 gas flow to membrane lung; "Acid infusion" = "Membrane lung" plus continuous acid infusion; ELRAD = "Acid infusion" plus continuous alkaline infusion. We changed the ventilatory rate of the mechanical ventilation to maintain PCO2 at 50-55 mmHg during the four protocols. The results showed that there was statistically no significant difference in the levels of pH, HCO3-, and base excess when each study protocol was initiated. The amount of CO2 eliminated by the membrane lung significantly increased by 1.6 times in the acid infusion protocol and the ELRAD protocol compared to the conventional membrane lung protocol. Minute ventilation in the ELRAD protocol significantly decreased by 0.5 times compared with the hemodiafiltration only protocol (P < 0.0001), the membrane lung (P = 0.0006) and acid infusion protocol (P = 0.0017), respectively. In conclusion, a developed CO2 removal system efficiently removed CO2 at low blood flow and reduced minute ventilation, while maintaining acid-base balance within the normal range.


Subject(s)
Hemodiafiltration/methods , Renal Dialysis/methods , Respiration, Artificial/methods , Respiratory Insufficiency/therapy , Animals , Carbon Dioxide/blood , Female , Hemodynamics , Lung/blood supply , Respiratory Insufficiency/blood , Swine , Tidal Volume/physiology
SELECTION OF CITATIONS
SEARCH DETAIL