ABSTRACT
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Subject(s)
Moths , Spiroplasma , Wolbachia , Animals , Female , Male , Symbiosis , Larva/microbiology , Reproduction , Apoptosis , Wolbachia/genetics , Spiroplasma/geneticsABSTRACT
Male-killing, the death of male offspring induced by maternally transmitted microbes, is classified as early, or late, male-killing. The primary advantage afforded by early male-killing, which typically occurs during embryogenesis, is the reallocation of resources to females, that would have otherwise been consumed by males. Meanwhile, the key advantage of late male-killing, which typically occurs during late larval development, is the maximized potential for horizontal transmission. To date, no studies have reported on the associated developmental and physiological effects of host coinfection with early and late male-killers, which may have a significant impact on the population dynamics of the male-killers. Here we used a lepidopteran tea pest Homona magnanima as a model, which is a unique system wherein an early male-killer (a Spiroplasma bacterium) and a late male-killer (an RNA virus) can coexist in nature. An artificially established matriline, coinfected with both Spiroplasma and RNA virus, exhibited embryonic death (early male-killing) as seen in the host line singly infected with Spiroplasma. Moreover, the coinfected line also exhibited developmental retardation and low pupal weight similar to the host line singly infected with the RNA virus. A series of field surveys revealed that Spiroplasma-RNA virus coinfection occurs in nature at a low frequency. Hence, although the two male-killers are capable of coexisting within the H. magnanima population independently, high associated fitness cost appears to limit the prevalence of male-killer coinfection in the field host population.
Subject(s)
Moths/microbiology , RNA Virus Infections/mortality , RNA Viruses/pathogenicity , Reproduction/physiology , Spiroplasma/physiology , Animals , Female , Male , Wolbachia/metabolismABSTRACT
Arthropods are frequently infected with inherited symbionts, which sometimes confer fitness benefits on female hosts or manipulate host reproduction. Early male killing, in which infected males die during embryogenesis, is induced by some bacteria, such as Wolbachia and Spiroplasma. A female-biased sex ratio has been found in Homona magnanima, collected from a tea plantation in Japan. Here, we examined the male-killing trait in H. magnanima and identified the agent that induces early male killing. The sex ratio distortion (SR) strain produced only females and no males, and its egg hatch rate was significantly lower than that of the normal (N) strain. The N strain was infected with only Wolbachia, whereas the SR strain was infected with both Wolbachia and Spiroplasma. Antibiotic treatment with 0.10% tetracycline restored the 1:1 sex ratio in the SR strain. Females treated with 0.05% tetracycline were positive for Spiroplasma but not for Wolbachia and showed a female-biased sex ratio, whereas Wolbachia-positive females did not revert to male killing. When inoculated with a homogenate of the SR strain female, females infected with only Spiroplasma produced female-biased offspring. Sequence analysis of the 16S rRNA gene revealed that Spiroplasma sp. of H. magnanima belonged to the ixodetis clade. These results indicate that Spiroplasma was responsible for male killing in H. magnanima. Late male killing is induced in H. magnanima by an RNA-like virus, and therefore this is the first case in which different male-killing agents expressed at different times in the life cycle have been found within one host species.
Subject(s)
Moths/microbiology , Moths/physiology , Sex Ratio , Spiroplasma/physiology , Animals , Female , Japan , Male , Moths/drug effects , RNA, Ribosomal, 16S , Spiroplasma/genetics , Symbiosis , Tetracycline/pharmacology , Wolbachia/physiologyABSTRACT
Late male-killing, a male-specific death after hatching, is a unique phenotype found in Homona magnanima, oriental tea tortrix. The male-killing agent was suspected to be an RNA virus, but details were unknown. We herein successfully isolated and identified the putative male-killing virus as Osugoroshi viruses (OGVs). The three RNA-dependent RNA polymerase genes detected were phylogenetically related to Partitiviridae, a group of segmented double-stranded RNA viruses. Purified dsRNA from a late male-killing strain of H. magnanima revealed 24 segments, in addition to the RdRps, with consensus terminal sequences. These segments included the previously found male-killing agents MK1068 (herein OGV-related RNA16) and MK1241 (OGV-related RNA7) RNAs. Ultramicroscopic observation of purified virions, which induced late male-killing in the progeny of injected moths, showed sizes typical of Partitiviridae. Mathematical modeling showed the importance of late male-killing in facilitating horizontal transmission of OGVs in an H. magnanima population. This study is the first report on the isolation of partiti-like virus from insects, and one thought to be associated with late male-killing, although the viral genomic contents and combinations in each virus are still unknown.