Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Rev Mol Cell Biol ; 23(6): 407-427, 2022 06.
Article in English | MEDLINE | ID: mdl-35228717

ABSTRACT

Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA-protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer.


Subject(s)
Genomic Instability , Neoplasms , DNA Damage/genetics , DNA Replication/genetics , Humans , Mitochondria/genetics , Neoplasms/genetics
2.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34102106

ABSTRACT

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Subject(s)
DNA Repair/genetics , DNA/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , X-ray Repair Cross Complementing Protein 1/metabolism , Animals , Cell Line , DNA Breaks, Single-Stranded , DNA Damage/drug effects , DNA Damage/genetics , DNA Ligase ATP/metabolism , DNA Polymerase beta/metabolism , DNA Repair/drug effects , DNA-Binding Proteins/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding/drug effects
3.
Mol Cell ; 80(6): 1013-1024.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33338401

ABSTRACT

Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.


Subject(s)
Cell Differentiation/drug effects , Cellular Reprogramming/genetics , Fanconi Anemia/genetics , Formaldehyde/toxicity , DNA Damage/drug effects , DNA Repair/genetics , Fanconi Anemia/blood , Fanconi Anemia/pathology , Formaldehyde/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Genomic Instability/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Humans , K562 Cells , Transcription, Genetic
4.
Mol Cell ; 73(6): 1267-1281.e7, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30704900

ABSTRACT

BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.


Subject(s)
BRCA1 Protein/genetics , Chromatin/enzymology , Fibroblasts/enzymology , Haploinsufficiency , Neoplasms/enzymology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , BRCA2 Protein/genetics , Cell Line, Tumor , Chromatin/genetics , DNA Damage , Fanconi Anemia Complementation Group N Protein/genetics , Fanconi Anemia Complementation Group N Protein/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
5.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31202576

ABSTRACT

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Subject(s)
DNA Topoisomerases, Type II/genetics , Genomic Instability/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Translocation, Genetic/genetics , CCCTC-Binding Factor/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromosomes/chemistry , Chromosomes/genetics , DNA/genetics , DNA Breaks, Double-Stranded , Humans , Leukemia/genetics , Leukemia/pathology
6.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657044

ABSTRACT

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Subject(s)
Checkpoint Kinase 1 , DNA Replication , Poly (ADP-Ribose) Polymerase-1 , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Mice , Humans , DNA Damage , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
7.
Nucleic Acids Res ; 51(22): 12288-12302, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37944988

ABSTRACT

Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo-/-, CTF18-/-, PARP1-/-, CTF18-/-/POLE1exo-/-, PARP1-/-/POLE1exo-/-, and CTF18-/-/PARP1-/- cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo-/- and HDR-deficient BRCA1-/- cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo-/- with BRCA1-/- mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.


Subject(s)
Avian Proteins , DNA Polymerase II , DNA Replication , DNA Polymerase II/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Animals , Chickens , Avian Proteins/metabolism
8.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36415926

ABSTRACT

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Subject(s)
DNA Breaks, Double-Stranded , Transcription Factors , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Glucocorticoids/pharmacology , DNA Repair , Nuclear Proteins/metabolism , Hydrocortisone/pharmacology , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA/genetics
9.
Mol Cell ; 64(3): 580-592, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27814490

ABSTRACT

The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.


Subject(s)
Antigens, Neoplasm/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Nuclear Proteins/genetics , Recombinational DNA Repair/drug effects , Transcription Factors/genetics , Acid Anhydride Hydrolases , Animals , Antigens, Neoplasm/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Chickens , DNA/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Etoposide/pharmacology , Gene Expression Regulation , Genomic Instability/drug effects , Humans , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , MRE11 Homologue Protein , Mutation , Nuclear Proteins/metabolism , Phosphoric Diester Hydrolases , Poly-ADP-Ribose Binding Proteins , Signal Transduction , Topoisomerase II Inhibitors/pharmacology , Transcription Factors/metabolism
10.
Biochem Biophys Res Commun ; 657: 43-49, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36972660

ABSTRACT

Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Humans , Human T-lymphotropic virus 1/genetics , DNA Mismatch Repair , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Leukemia-Lymphoma, Adult T-Cell/pathology
11.
Genes Cells ; 27(5): 331-344, 2022 May.
Article in English | MEDLINE | ID: mdl-35194903

ABSTRACT

Base excision repair (BER) removes damaged bases by generating single-strand breaks (SSBs), gap-filling by DNA polymerase ß (POLß), and resealing SSBs. A base-damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti-cancer base-damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLß to SSBs, but XRCC1-/- cells are much more sensitive to MMS than PARP1-/- cells. We recently report that the PARP1 loss in XRCC1-/- cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1-/- cells also restores their tolerance to the three anti-cancer base-damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1-/- mutation, but not POLß-/- , with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis-dependent and independent mechanisms.


Subject(s)
Poisons , Poly(ADP-ribose) Polymerases , Adenosine Diphosphate Ribose , Alkylating Agents , DNA , DNA Damage , DNA Repair , Methyl Methanesulfonate/pharmacology , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide/pharmacology
12.
Nucleic Acids Res ; 49(18): 10493-10506, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34551432

ABSTRACT

The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , DNA/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Cell Line , Chickens , DNA Replication/drug effects , DNA-Binding Proteins/genetics , Humans , Phthalazines/toxicity , Poly(ADP-ribose) Polymerase Inhibitors/toxicity
13.
Nucleic Acids Res ; 49(1): 244-256, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33290559

ABSTRACT

The human genome contains hundreds of large, structurally diverse blocks that are insufficiently represented in the reference genome and are thus not amenable to genomic analyses. Structural diversity in the human population suggests that these blocks are unstable in the germline; however, whether or not these blocks are also unstable in the cancer genome remains elusive. Here we report that the 500 kb block called KRTAP_region_1 (KRTAP-1) on 17q12-21 recurrently demarcates the amplicon of the ERBB2 (HER2) oncogene in breast tumors. KRTAP-1 carries numerous tandemly-duplicated segments that exhibit diversity within the human population. We evaluated the fragility of the block by cytogenetically measuring the distances between the flanking regions and found that spontaneous distance outliers (i.e DNA breaks) appear more frequently at KRTAP-1 than at the representative common fragile site (CFS) FRA16D. Unlike CFSs, KRTAP-1 is not sensitive to aphidicolin. The exonuclease activity of DNA repair protein Mre11 protects KRTAP-1 from breaks, whereas CtIP does not. Breaks at KRTAP-1 lead to the palindromic duplication of the ERBB2 locus and trigger Breakage-Fusion-Bridge cycles. Our results indicate that an insufficiently investigated area of the human genome is fragile and could play a crucial role in cancer genome evolution.


Subject(s)
Breast Neoplasms/genetics , Chromosome Fragile Sites/genetics , DNA Repair , Gene Amplification , Gene Duplication/genetics , Genes, erbB-2 , Keratins, Hair-Specific/physiology , Aphidicolin/pharmacology , Breast/metabolism , Breast Neoplasms/metabolism , Cells, Cultured , Chromosomal Instability , DNA Breaks , DNA Copy Number Variations , DNA, Neoplasm/genetics , Epithelial Cells/metabolism , Female , Genetic Variation , Genomic Instability , Humans , MRE11 Homologue Protein/physiology , Neoplasm Proteins/physiology , Whole Genome Sequencing
14.
Proc Natl Acad Sci U S A ; 117(25): 14412-14420, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513688

ABSTRACT

Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.


Subject(s)
DNA Breaks, Single-Stranded/radiation effects , DNA Repair , DNA Topoisomerases, Type I/metabolism , Ultraviolet Rays/adverse effects , CRISPR-Cas Systems/genetics , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Fibroblasts , Gene Knockout Techniques , Humans , MCF-7 Cells , Primary Cell Culture , Skin/cytology , Skin/pathology , Skin/radiation effects , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , Xeroderma Pigmentosum/etiology , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism
15.
Nucleic Acids Res ; 48(9): 4928-4939, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32297953

ABSTRACT

Replication factor C (RFC), a heteropentamer of RFC1-5, loads PCNA onto DNA during replication and repair. Once DNA synthesis has ceased, PCNA must be unloaded. Recent findings assign the uloader role primarily to an RFC-like (RLC) complex, in which the largest RFC subunit, RFC1, has been replaced with ATAD5 (ELG1 in Saccharomyces cerevisiae). ATAD5-RLC appears to be indispensable, given that Atad5 knock-out leads to embryonic lethality. In order to learn how the retention of PCNA on DNA might interfere with normal DNA metabolism, we studied the response of ATAD5-depleted cells to several genotoxic agents. We show that ATAD5 deficiency leads to hypersensitivity to methyl methanesulphonate (MMS), camptothecin (CPT) and mitomycin C (MMC), agents that hinder the progression of replication forks. We further show that ATAD5-depleted cells are sensitive to poly(ADP)ribose polymerase (PARP) inhibitors and that the processing of spontaneous oxidative DNA damage contributes towards this sensitivity. We posit that PCNA molecules trapped on DNA interfere with the correct metabolism of arrested replication forks, phenotype reminiscent of defective homologous recombination (HR). As Atad5 heterozygous mice are cancer-prone and as ATAD5 mutations have been identified in breast and endometrial cancers, our finding may open a path towards the therapy of these tumours.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Antineoplastic Agents/pharmacology , DNA Damage , DNA-Binding Proteins/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Cell Line , Cell Line, Tumor , Chickens , Chromatin/enzymology , DNA/metabolism , DNA-Binding Proteins/metabolism , Genomic Instability , Mutagens/toxicity , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism
16.
J Biol Chem ; 295(51): 17460-17475, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33453991

ABSTRACT

Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.


Subject(s)
Homologous Recombination , Mismatch Repair Endonuclease PMS2/metabolism , MutL Proteins/metabolism , Camptothecin/pharmacology , Cell Line , DNA Breaks, Double-Stranded , DNA Repair , DNA, Cruciform , G2 Phase , Gamma Rays , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Proteins/genetics , Mutation , Phthalazines/pharmacology , Piperazines/pharmacology
17.
Genes Cells ; 25(7): 450-465, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32277721

ABSTRACT

Androgens stimulate the proliferation of epithelial cells in the prostate by activating topoisomerase 2 (TOP2) and regulating the transcription of target genes. TOP2 resolves the entanglement of genomic DNA by transiently generating double-strand breaks (DSBs), where TOP2 homodimers covalently bind to 5' DSB ends, called TOP2-DNA cleavage complexes (TOP2ccs). When TOP2 fails to rejoin TOP2ccs generating stalled TOP2ccs, tyrosyl DNA phosphodiesterase-2 (TDP2) removes 5' TOP2 adducts from stalled TOP2ccs prior to the ligation of the DSBs by nonhomologous end joining (NHEJ), the dominant DSB repair pathway in G0 /G1 phases. We previously showed that estrogens frequently generate stalled TOP2ccs in G0 /G1 phases. Here, we show that physiological concentrations of androgens induce several DSBs in individual human prostate cancer cells during G1 phase, and loss of TDP2 causes a five times higher number of androgen-induced chromosome breaks in mitotic chromosome spreads. Intraperitoneally injected androgens induce several DSBs in individual epithelial cells of the prostate in TDP2-deficient mice, even at 20 hr postinjection. In conclusion, physiological concentrations of androgens have very strong genotoxicity, most likely by generating stalled TOP2ccs.


Subject(s)
Androgens/toxicity , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Genomic Instability/genetics , Phosphoric Diester Hydrolases/metabolism , Prostate/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromosome Breakage , DNA End-Joining Repair/drug effects , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , Epithelial Cells/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , Genomic Instability/drug effects , Histones/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoric Diester Hydrolases/genetics , Prostate/drug effects , Prostatic Neoplasms/genetics , RNA, Small Interfering , Receptors, Androgen/metabolism
18.
Mutagenesis ; 36(5): 331-338, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34216473

ABSTRACT

Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) i.e. deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1-/-/XPA-/-), the core factors of base excision repair (BER) and nucleotide excision repair (NER), respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focussed on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1-/-/XPA-/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1-/-/XPA-/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER-deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.


Subject(s)
DNA Damage/drug effects , DNA Repair , Mutagenicity Tests , Mutagens/toxicity , Mutation/drug effects , Thymidine Kinase/genetics , Carcinogens/chemistry , Carcinogens/toxicity , Cell Line , DNA Repair-Deficiency Disorders , Dose-Response Relationship, Drug , Humans , Mutagenicity Tests/methods , Mutagens/chemistry
19.
PLoS Biol ; 16(3): e1002621, 2018 03.
Article in English | MEDLINE | ID: mdl-29494577

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.1000428.].

20.
Proc Natl Acad Sci U S A ; 115(50): 12793-12798, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30487218

ABSTRACT

DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1-/-/PIAS4-/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1-/-/PIAS4-/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNAK164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1-/-/PIAS4-/- cells. This epistatic relationship between the PCNAK164R/K164R and the PIAS1-/-/PIAS4-/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1-/-/PIAS4-/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.


Subject(s)
B-Lymphocytes/metabolism , Chickens/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Proliferating Cell Nuclear Antigen/genetics , Protein Inhibitors of Activated STAT/genetics , Sumoylation/genetics , Animals , Cell Cycle/genetics , Cell Line , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Gene Conversion/genetics , Genes, Immunoglobulin/genetics , Humans , Immunoglobulin Variable Region/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL