Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
Cancers (Basel) ; 15(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36980718

ABSTRACT

The characterization of cutaneous squamous cell carcinoma (cSCC) at the molecular level is lacking in the current literature due to the high mutational burden of this disease. Immunosuppressed patients afflicted with cSCC experience considerable morbidity and mortality. In this article, we review the molecular profile of cSCC among the immunosuppressed and immunocompetent populations at the genetic, epigenetic, transcriptomic, and proteometabolomic levels, as well as describing key differences in the tumor immune microenvironment between these two populations. We feature novel biomarkers from the recent literature which may serve as potential targets for therapy.

3.
Bioorg Med Chem Lett ; 22(1): 138-43, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22153340

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease associated with irreversible progressive airflow limitation. Matrix metalloproteinase-12 (MMP-12) has been characterized to be one of the major proteolytic enzymes to induce airway remodeling, destruction of elastin and the aberrant remodeling of damaged alveoli in COPD and asthma. The goal of this project is to develop and identify an orally potent and selective small molecule inhibitor of MMP-12 for treatment of COPD and asthma. Syntheses and structure-activity relationship (SAR) studies of a series of dibenzofuran (DBF) sulfonamides as MMP-12 inhibitors are described. Potent inhibitors of MMP-12 with excellent selectivity against other MMPs were identified. Compound 26 (MMP118), which exhibits excellent oral efficacy in the MMP-12 induced ear-swelling inflammation and lung inflammation mouse models, had been successfully advanced into Development Track status.


Subject(s)
Drug Design , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase Inhibitors , Pulmonary Disease, Chronic Obstructive/enzymology , Animals , Asthma/drug therapy , Asthma/enzymology , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Humans , Inflammation , Inhibitory Concentration 50 , Mice , Models, Chemical , Models, Molecular , Molecular Conformation , Pulmonary Disease, Chronic Obstructive/drug therapy , Structure-Activity Relationship , Sulfonamides/chemistry , X-Rays
4.
Bioorg Med Chem Lett ; 21(22): 6800-3, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21982494

ABSTRACT

Design, synthesis and structure-activity relationship of a series of biphenylsulfonamido-3-methylbutanoic acid based aggrecanase-1 inhibitors are described. In addition to robust aggrecanase-1 inhibition, these compounds also exhibit potent MMP-13 activity. In cell-based cartilage explants assay compound 48 produced 87% inhibition of proteoglycan degradation at 10 µg/mL. Good pharmacokinetic properties were demonstrated by 46 with a half-life of 6h and bioavailability of 23%.


Subject(s)
ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , Biphenyl Compounds/pharmacology , Procollagen N-Endopeptidase/antagonists & inhibitors , Procollagen N-Endopeptidase/metabolism , Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , ADAMTS4 Protein , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Drug Design , Humans , Male , Matrix Metalloproteinase 13/metabolism , Models, Molecular , Osteoarthritis/drug therapy , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Proteoglycans/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
5.
Arthritis Rheum ; 62(8): 2283-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20506481

ABSTRACT

OBJECTIVE: All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS: JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22- and erythropoietin (EPO)-mediated models, while on-target signaling was measured by IL-2-mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. RESULTS: In vitro, WYE-151650 potently suppressed IL-2-induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10-29-fold less activity against JAK-3-independent IL-6- or GM-CSF-induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2-induced STAT phosphorylation, but not IL-6-induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3-mediated IL-2-induced interferon-gamma production and decreased the natural killer cell population in mice, while not affecting IL-22-induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. CONCLUSION: In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1-, JAK-2-, or Tyk-2-dependent cytokine pathways for efficacy.


Subject(s)
Arthritis, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Analysis of Variance , Animals , Arthritis, Experimental/metabolism , Blotting, Western , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects , Signal Transduction/drug effects
6.
J Allergy Clin Immunol ; 126(1): 70-6.e16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20546881

ABSTRACT

BACKGROUND: Matrix metalloproteinase (MMP)-12-mediated pathologic degradation of the extracellular matrix and the subsequent repair cycles influence the airway changes in patients with asthma and chronic obstructive pulmonary disease (COPD). The common serine variant at codon 357 of the MMP12 gene (rs652438) is associated with clinical manifestations consistent with more aggressive matrix degradation in other tissues. OBJECTIVE: We sought to explore the hypothesis that MMP12 represents a novel therapeutic target in asthma. METHODS: The role of the rs652438 variant on clinical phenotype was explored in young asthmatic patients and patients with COPD. Candidate MMP-12 inhibitors were identified on the basis of potency and selectivity against a panel of other MMPs. The role of MMP-12-specific inhibition was tested in vitro, as well as in animal models of allergic airway inflammation. RESULTS: The odds ratio for having greater asthma severity was 2.00 (95% CI, 1.24-3.24; P = .004) when comparing asthmatic patients with at least 1 copy of the serine variant with those with none. The carrier frequency for the variant increased in line with asthma treatment step (P = .000). The presence of the variant nearly doubled the odds in favor of asthmatic exacerbations (odds ratio, 1.90; 95% CI, 1.19-3.04; P = .008) over the previous 6 months. The serine variant was also associated with increased disease severity in patients with COPD (P = .016). Prior administration of an MMP-12-specific inhibitor attenuated the early airway response and completely blocked the late airway response with subsequent Ascaris suum challenge in sheep. CONCLUSION: Studies on human participants with asthma and COPD show that the risk MMP12 gene variant is associated with disease severity. In allergen-sensitized sheep pharmacologic inhibition of MMP12 downregulates both early and late airway responses in response to allergic stimuli.


Subject(s)
Asthma/drug therapy , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/therapeutic use , Adolescent , Adult , Animals , Asthma/genetics , Child , Child, Preschool , Female , Genotype , Humans , Male , Matrix Metalloproteinase 12/genetics , Polymorphism, Single Nucleotide , Sheep
7.
JAAD Int ; 5: 54-64, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34368789

ABSTRACT

BACKGROUND: Teledermatology (TD) has emerged as a critical way of delivering care remotely in the COVID-19 pandemic. OBJECTIVE: We conducted a systematic review to assess how TD has been implemented worldwide. METHODS: We searched PubMed, Scopus, Embase, Web of Science, and Google Scholar for articles on the use of TD for patient care, written in English and published from December 1, 2019, to October 15, 2020. RESULTS: Twenty-seven studies were included, involving 16,981 patients. There was significant uptake of TD during the pandemic. Synchronous TD appeared to be more commonly implemented than asynchronous TD. Common ambulatory dermatoses such as acne or eczema were reported to be more amenable to TD assessment and management. TD also appeared to be useful for the diagnosis of cutaneous involvement of COVID-19 infection and follow-up of stable oncodermatology cases. LIMITATIONS: A pooled analysis of all relevant outcomes was not always possible due to the heterogeneity in the methodologies of included studies. CONCLUSION: TD is a useful and convenient tool for the management of common ambulatory dermatoses in the COVID-19 pandemic.

8.
Bioorg Med Chem Lett ; 19(16): 4546-50, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19625186

ABSTRACT

Potent 3,4-disubstituted benzofuran P1' MMP-13 inhibitors have been prepared. Selectivity over MMP-2 was achieved through a substituent at the C4 position of the benzofuran P1' moiety of the molecule. By replacing a backbone benzene with a pyridine and valine with threonine, compounds (e.g., 44) with greatly reduced plasma protein binding were also obtained.


Subject(s)
Benzofurans/chemistry , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemistry , Animals , Benzofurans/chemical synthesis , Benzofurans/pharmacology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Binding , Rabbits , Serum Albumin/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 19(13): 3485-8, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19464884

ABSTRACT

Tpl2 (cot/MAP3K8) is an upstream kinase of MEK in the ERK pathway. It plays an important role in Tumor Necrosis Factor-alpha (TNF-alpha) production and signaling. We have discovered that 8-halo-4-(3-chloro-4-fluoro-phenylamino)-6-[(1H-[1,2,3]triazol-4-ylmethyl)-amino]-quinoline-3-carbonitriles (4) are potent inhibitors of this enzyme. In order to improve the inhibition of TNF-alpha production in LPS-stimulated human blood, a series of analogs with a variety of substitutions around the triazole moiety were studied. We found that a cyclic amine group appended to the triazole ring could considerably enhance potency, aqueous solubility, and cell membrane permeability. Optimization of these cyclic amine groups led to the identification of 8-chloro-4-(3-chloro-4-fluorophenylamino)-6-((1-(1-ethylpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)methylamino)quinoline-3-carbonitrile (34). In a LPS-stimulated rat inflammation model, compound 34 showed good efficacy in inhibiting TNF-alpha production.


Subject(s)
Anti-Inflammatory Agents/chemistry , MAP Kinase Kinase Kinases/antagonists & inhibitors , Nitriles/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Quinolines/chemistry , Tumor Necrosis Factor-alpha/blood , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Female , Humans , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/metabolism , Monocytes/drug effects , Monocytes/immunology , Nitriles/chemical synthesis , Nitriles/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/biosynthesis
10.
Bioorg Med Chem ; 17(13): 4383-405, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19482480

ABSTRACT

The synthesis and optimization of a class of trisubstituted quinazoline-2,4(1H,3H)-dione cPLA(2)alpha inhibitors are described. Utilizing pharmacophores that were found to be important in our indole series, we discovered inhibitors with reduced lipophilicity and improved aqueous solubility. These compounds are active in whole blood assays, and cell-based assay results indicate that prevention of arachidonic acid release arises from selective cPLA(2)alpha inhibition.


Subject(s)
Benzhydryl Compounds/chemical synthesis , Benzhydryl Compounds/pharmacology , Group IV Phospholipases A2/antagonists & inhibitors , Group IV Phospholipases A2/metabolism , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Animals , Arachidonic Acid/metabolism , Benzhydryl Compounds/chemistry , Blood/drug effects , Blood/metabolism , Cell Line , Humans , Quinazolinones/chemistry , Rats , Solubility , Structure-Activity Relationship
11.
J Med Chem ; 51(12): 3388-413, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18498150

ABSTRACT

The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays. The binding of these compounds has been further examined using isothermal titration calorimetry. Finally, these compounds have shown efficacy when dosed orally in multiple acute and chronic prostaglandin and leukotriene dependent in vivo models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Group IV Phospholipases A2/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Benzoates/chemistry , Benzoates/pharmacology , Biological Availability , Bronchoconstriction/drug effects , Calorimetry , Carrageenan , Cell Line , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/chemically induced , Edema/drug therapy , Humans , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Male , Mice , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
12.
Bioorg Med Chem ; 16(3): 1345-58, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17998165

ABSTRACT

The synthesis and structure-activity relationship of a series of benzenesulfonamide indole inhibitors of cPLA(2)alpha are described. Substitution of the benzenesulfonamide led to analogues with 50-fold improvement in potency versus the unsubstituted benzenesulfonamide lead compound. Rat pharmacokinetics in a minimal formulation was used to prioritize compounds, leading to the discovery of a potent inhibitor of cPLA(2)alpha with oral efficacy in models of rat carrageenan paw edema and Ascaris suum airway challenge in naturally sensitized sheep.


Subject(s)
Group IV Phospholipases A2/antagonists & inhibitors , Group IV Phospholipases A2/metabolism , Indoles/pharmacology , Sulfonamides/chemistry , Administration, Oral , Animals , Ascariasis/drug therapy , Ascariasis/parasitology , Ascaris suum/physiology , Calorimetry , Humans , Indoles/chemistry , Indoles/therapeutic use , Molecular Structure , Rats , Sheep , Structure-Activity Relationship , Temperature , Benzenesulfonamides
13.
J Med Chem ; 50(1): 21-39, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201408

ABSTRACT

Leukocyte recruitment of sites of inflammation and tissue injury involves leukocyte rolling along the endothelial wall, followed by firm adherence of the leukocyte, and finally transmigration of the leukocyte across cell junctions into the underlying tissue. The initial rolling step is mediated by the interaction of leukocyte glycoproteins containing active moieties such as sialyl Lewisx (sLex) with P-selectin expressed on endothelial cells. Consequently, inhibition of this interaction by means of a small molecule P-selectin antagonist is an attractive strategy for the treatment of inflammatory diseases such as arthritis. High-throughput screening of the Wyeth chemical library identified the quinoline salicylic acid class of compounds (1) as antagonists of P-selectin, with potency in in vitro and cell-based assays far superior to that of sLex. Through iterative medicinal chemistry, we identified analogues with improved P-selectin activity, decreased inhibition of dihydrooratate dehydrogenase, and acceptable CYP profiles. Lead compound 36 was efficacious in the rat AIA model of rheumatoid arthritis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Hydroxyquinolines/chemical synthesis , P-Selectin/metabolism , Quinolines/chemical synthesis , Salicylates/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Biological Availability , Cytochrome P-450 Enzyme Inhibitors , Databases, Factual , Edema/drug therapy , Humans , Hydroxyquinolines/pharmacokinetics , Hydroxyquinolines/pharmacology , In Vitro Techniques , Leukocyte Rolling/drug effects , Male , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Salicylates/pharmacokinetics , Salicylates/pharmacology , Structure-Activity Relationship
14.
J Med Chem ; 50(1): 40-64, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201409

ABSTRACT

P-selectin-PSGL-1 interaction causes rolling of leukocytes on the endothelial cell surface, which subsequently leads to firm adherence and leukocyte transmigration through the vessel wall into the surrounding tissues. P-selectin is upregulated on the surface of both platelets and endothelium in a variety of atherosclerosis-associated conditions. Consequently, inhibition of this interaction by means of a small molecule P-selectin antagonist is an attractive strategy for the treatment of atherosclerosis. High-throughput screening and subsequent analoging had led to the identification of compound 1 as the lead candidate. Herein, we report the continuation of this work and the discovery of a second-generation series, the tetrahydrobenzoquinoline salicylic acids. These compounds have improved pharmacokinetic properties, and a number of them have shown oral efficacy in mouse and rat models of atherogenesis and vascular injury. The lead 31 (PSI-697), is currently in clinical development for the treatment of atherothrombotic vascular events.


Subject(s)
Atherosclerosis/prevention & control , Fibrinolytic Agents/chemical synthesis , Hydroxyquinolines/chemical synthesis , P-Selectin/metabolism , Quinolines/chemical synthesis , Salicylates/chemical synthesis , Administration, Oral , Animals , Apolipoproteins E/genetics , Carotid Stenosis/prevention & control , Dogs , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Hydroxyquinolines/pharmacokinetics , Hydroxyquinolines/pharmacology , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Leukocyte Rolling/drug effects , Male , Mice , Mice, Knockout , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Salicylates/pharmacokinetics , Salicylates/pharmacology , Structure-Activity Relationship
15.
J Med Chem ; 50(6): 1380-400, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17305324

ABSTRACT

The synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed. Compound 123 (Ecopladib) is a sub-micromolar inhibitor of cPLA2alpha in the GLU micelle and rat whole blood assays. Compound 123 displayed oral efficacy in the rat carrageenan air pouch and rat carrageenan-induced paw edema models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoates/chemical synthesis , Cytosol/enzymology , Indoles/chemical synthesis , Phospholipases A/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoates/pharmacokinetics , Benzoates/pharmacology , Carrageenan , Edema/chemically induced , Edema/drug therapy , Group IV Phospholipases A2 , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
16.
J Med Chem ; 50(19): 4681-98, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17705360

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin receptor pathways and thus an attractive therapeutic target for diabetes and obesity. Starting with a high micromolar lead compound, structure-based optimization of novel PTP1B inhibitors by extension of the molecule from the enzyme active site into the second phosphotyrosine binding site is described. Medicinal chemistry, guided by X-ray complex structure and molecular modeling, has yielded low nanomolar PTP1B inhibitors in an efficient manner. Compounds from this chemical series were found to be actively transported into hepatocytes. This active uptake into target tissues could be one of the possible avenues to overcome the poor membrane permeability of PTP1B inhibitors.


Subject(s)
Models, Molecular , Phosphotyrosine/metabolism , Protein Tyrosine Phosphatases/antagonists & inhibitors , Thiophenes/chemical synthesis , Animals , Binding Sites , Caco-2 Cells , Catalytic Domain , Cell Membrane Permeability , Crystallography, X-Ray , Half-Life , Hepatocytes , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Structure , Phosphotyrosine/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Tissue Distribution
17.
J Med Chem ; 50(19): 4728-45, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17715908

ABSTRACT

Tumor progression loci-2 (Tpl2) (Cot/MAP3K8) is a serine/threonine kinase in the MAP3K family directly upstream of MEK. Recent studies using Tpl2 knockout mice have indicated an important role for Tpl2 in the lipopolysaccharide (LPS) induced production of tumor necrosis factor alpha (TNF-alpha) and other proinflammatory cytokines involved in diseases such as rheumatoid arthritis. Initial 4-anilino-6-aminoquinoline-3-carbonitrile leads showed poor selectivity for Tpl2 over epidermal growth factor receptor (EGFR) kinase. Using molecular modeling and crystallographic data of the EGFR kinase domain with and without an EGFR kinase-specific 4-anilinoquinazoline inhibitor (erlotinib, Tarceva), we hypothesized that we could diminish the inhibition of EGFR kinase by substitution at the C-8 position of our 4-anilino-6-aminoquinoline-3-carbonitrile leads. The 8-substituted-4-anilino-6-aminoquinoline-3-carbonitriles were prepared from the appropriate 2-substituted 4-nitroanilines. Modifications to the C-6 and C-8 positions led to the identification of compounds with increased inhibition of TNF-alpha release from LPS-stimulated rat and human blood, and these analogues were also highly selective for Tpl2 kinase over EGFR kinase. Further structure-activity based modifications led to the identification of 8-bromo-4-(3-chloro-4-fluorophenylamino)-6-[(1-methyl-1H-imidazol-4-yl)methylamino]quinoline-3-carbonitrile, which demonstrated in vitro as well as in vivo efficacy in inhibition of LPS-induced TNF-alpha production.


Subject(s)
Aminoquinolines/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Imidazoles/chemical synthesis , MAP Kinase Kinase Kinases/antagonists & inhibitors , Models, Molecular , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Aminoquinolines/pharmacokinetics , Aminoquinolines/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Crystallography, X-Ray , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Erlotinib Hydrochloride , Female , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , In Vitro Techniques , MAP Kinase Kinase Kinases/biosynthesis , MAP Kinase Kinase Kinases/chemistry , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/chemistry , Quinazolines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/chemistry
18.
J Med Chem ; 49(1): 135-58, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16392799

ABSTRACT

Compound 1 was previously reported to be a potent inhibitor of cPLA(2)alpha in both artificial monomeric substrate and cell-based assays. However, 1 was inactive in whole blood assays previously used to characterize cyclooxygenase and lipoxygenase inhibitors. The IC(50) of 1 increased dramatically with cell number or lipid/detergent concentration. In an attempt to insert an electrophilic ketone between the indole and benzoic acid moieties, we discovered that increasing the distance between the two moieties gave a compound with activity in the GLU (7-hydroxycoumarinyl-gamma-linolenate) micelle assay, which contains lipid and detergent. Extensive structure-activity relationship work around this lead identified a potent pharmacophore for cPLA(2)alpha inhibition. The IC(50)s between the GLU micelle and rat whole blood assays correlated highly. No correlation was found for other parameters, including lipophilicity or acidity of the required acid functionality. Compounds 25, 39, and 94 emerged as potent, selective inhibitors of cPLA(2)alpha and represent well-validated starting points for further optimization.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Phospholipases A/antagonists & inhibitors , Animals , Cell Line , Cell Proliferation/drug effects , Cytosol/enzymology , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Group IV Phospholipases A2 , Humans , Indoles/chemistry , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
19.
J Med Chem ; 48(13): 4346-57, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-15974587

ABSTRACT

A search for noncarbohydrate sLe(x) mimics led to the development of quinic acid derivatives as selectin inhibitors. At Wyeth we solved the first cocrystal structure of a small molecule, quinic acid, with E-selectin. In the cocomplex two hydroxyls of quinic acid mimic the calcium-bound fucose of the tetrasaccharide sLe(x). The X-ray structure, together with structure based computational methods, was used to design quinic acid based libraries that were synthesized and evaluated for their ability to block the interaction of sLex with P-selectin. A large number of analogues were prepared using solution-phase parallel synthesis. Selected compounds showed decrease in leukocyte rolling in the IVM mouse model. Compound 2 inhibited neutrophil influx in the murine TIP model and demonstrated good plasma exposure.


Subject(s)
E-Selectin/metabolism , Oligosaccharides/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Animals , Binding Sites , Crystallography, X-Ray , Drug Design , Fucose , Jugular Veins/drug effects , Jugular Veins/physiology , Kinetics , Lewis Blood Group Antigens , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Conformation , Molecular Structure , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Oligosaccharides/chemical synthesis , Oligosaccharides/pharmacology , Rats , Rats, Sprague-Dawley , Sialyl Lewis X Antigen , Surface Plasmon Resonance
20.
Curr Opin Drug Discov Devel ; 5(4): 500-12, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12197308

ABSTRACT

Protein tyrosine phosphatases (PTPs) are a large family of diverse molecules that play an important role in both activating and attenuating a wide variety of cellular responses. One of these phosphatases, protein tyrosine phosphatase 1B (PTP1B), is clearly involved in attenuating insulin signaling, and much effort has been devoted towards the development of inhibitors of this enzyme as a therapeutic approach to treat insulin resistance and type 2 diabetes. This review will focus on recent advances in the development of small molecule inhibitors for PTP1B and the challenges for generating selective molecules. This review is largely limited to papers published within the last two years, since a review on this subject was published recently in this journal.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Insulin Resistance , Protein Synthesis Inhibitors/therapeutic use , Protein Tyrosine Phosphatases/antagonists & inhibitors , Technology, Pharmaceutical/trends , Animals , Diabetes Mellitus, Type 2/enzymology , Humans , Insulin Resistance/physiology , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/metabolism , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL