Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 113(6): 1259-1277, 2023 03.
Article in English | MEDLINE | ID: mdl-36648165

ABSTRACT

Auxin is indispensable to the fertilization-induced coordinated development of the embryo, endosperm, and seed coat. However, little attention has been given to the distribution pattern, maintenance mechanism, and function of auxin throughout the process of seed development. In the present study, we found that auxin response signals display a dynamic distribution pattern during Arabidopsis seed development. Shortly after fertilization, strong auxin response signals were observed at the funiculus, chalaza, and micropylar integument where the embryo attaches. Later, additional signals appeared at the middle layer of the inner integument (ii1') above the chalaza and the whole inner layer of the outer integument (oi1). These signals peaked when the seed was mature, then declined upon desiccation and disappeared in the dried seed. Auxin biosynthesis genes, including ASB1, TAA1, YUC1, YUC4, YUC8, and YUC9, contributed to the accumulation of auxin in the funiculus and seed coat. Auxin efflux carrier PIN3 and influx carrier AUX1 also contributed to the polar auxin distribution in the seed coat. PIN3 was expressed in the ii1 (innermost layer of the inner integument) and oi1 layers of the integument and showed polar localization. AUX1 was expressed in both layers of the outer integument and the endosperm and displayed a uniform localization. Further research demonstrated that the accumulation of auxin in the seed coat regulates seed size. Transgenic plants that specifically express the YUC8 gene in the oi2 or ii1 seed coat produced larger seeds. These results provide useful tools for cultivating high-yielding crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids , Seeds/metabolism , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant
2.
J Transl Med ; 22(1): 218, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424643

ABSTRACT

OBJECTIVE: Infectious pancreatic necrosis (IPN) is a serious complication of acute pancreatitis, and early recognition and timely intervention are the keys to improving clinical outcomes. The purpose of this study was to investigate the predictive capacity of the neutrophil CD64 index (nCD64 index) on IPN in patients with acute pancreatitis METHODS: This study comprises two independent cohorts: the training cohort consisted of 202 patients from Hunan Provincial People's Hospital, and the validation cohort consisted of 100 patients from Changsha Central Hospital. Peripheral blood samples were collected on the day of admission and on the 3rd, 5th, 7th, and 10th days of hospitalization, and the nCD64 index was detected by flow cytometry. Additionally, relevant clinical characteristics and laboratory biomarkers were collected and analyzed. RESULTS: We observed that nCD64 index on admission was significantly higher in the IPN group than Non-IPN group (p < 0.001). In the training cohort, a higher occurrence rate of IPN was observed in the high nCD64 index group compared to the moderate and low nCD64 index group (p < 0.001). Further analysis showed that nCD64 index was significant positive correlated with the incidence rate of IPN (p < 0.001, correlation coefficient = 0.972). Furthermore, logistic regression analysis showed that high expression of the nCD64 index on admission was a risk factor for the occurrence of IPN (OR = 2.971, p = 0.038). We further found that the nCD64 index of IPN patients was significantly higher than the Non-IPN patients on the days 1, 3, and 5 after admission, and the nCD64 index of IPN patients before and after the onset (p < 0.05). At the same time, this study revealed that the nCD64 index on admission showed good predictive efficacy for IPN (AUC = 0.859, sensitivity = 80.8%, specificity = 87.5%), which was comparable to APACHE II score. And this finding was further validated in an independent cohort of 100 participants (AUC = 0.919, Sensitivity = 100.0%, Specificity = 76.6%). CONCLUSION: This study demonstrated the clinical value of nCD64 index in patients with IPN patients for the first time through two independent cohort studies. The nCD64 index can be used as an early prediction and risk assessment tool for the occurrence of IPN, contributing to the improvement of patient outcomes and efficiency of medical resource allocation.


Subject(s)
Pancreatitis, Acute Necrotizing , Humans , Acute Disease , Biomarkers , Neutrophils , Pancreatitis, Acute Necrotizing/complications
3.
Chemistry ; 30(22): e202304024, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38391394

ABSTRACT

Formaldehyde is susceptible to illegal addition to foodstuffs to extend their shelf life due to its antimicrobial, preservative and bleaching properties. In this study, a self-supporting "nanosheet on nanosheet" arrays electrocatalyst with core-shell heterostructure was prepared in situ by coupling NiCo layer double hydroxide with 2D ZIF derived Co-nitrogen-doped porous carbon on carbon cloth (Co-N/C@NiCo-LDH NSAs/CC). Co-N/C nanosheet arrays act as a scaffold core with good electrical conductivity, providing more NiCo-LDH nucleation sites to avoid NiCo-LDH agglomeration, thus having fast mass/charge transfer performance. While the NiCo-LDH nanosheet arrays shell with high specific surface area provide more active sites for electrochemical reactions. As an electrocatalytic sensing electrode, Co-N/C@NiCo-LDH NSAs/CC has a wide linear range of 1 µM to 13 mM for formaldehyde detection, and the detection limit is 82 nM. Besides, the sensor has been applied to the detection of formaldehyde in food samples with satisfactory results.

4.
BMC Cancer ; 24(1): 624, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778317

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Subject(s)
Carcinoma, Hepatocellular , Cyclic Nucleotide Phosphodiesterases, Type 7 , DNA Methylation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Genes, Tumor Suppressor , Male , Cell Proliferation/genetics , Female , Neoplasm Metastasis , Cell Movement/genetics
5.
Fish Shellfish Immunol ; 151: 109705, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885801

ABSTRACT

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.

6.
Dig Dis Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662158

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to be related to the occurrence and development of a variety of cancers including hepatocellular carcinoma (HCC). However, a large number of potential HCC-related lncRNAs remain undiscovered and are yet to be fully understood. METHODS: Differentially expressed lncRNAs were first obtained from the tumor tissues and adjacent normal tissues of five HCC patients using high-throughput microarray chips. Then the expression levels of 10 differentially expressed lncRNAs were verified in 50 pairs of tissue samples from patients with HCC by quantitative real-time PCR (qRT-PCR). The oncogenic effects of lncRNA-4045 (ENST00000524045.6) in HCC cell lines were verified through a series of in vitro experiments including CCK-8 assay, plate clone formation assay, transwell assay, scratch assay, and flow cytometry. Subsequently, the potential target genes of lncRNA-4045 were predicted by bioinformatics analysis, fluorescence in situ hybridization assay, and RNA sequencing. The mechanism of lncRNA-4045 in HCC was explored by WB assay as well as rescue and enhancement experiments. RESULTS: The results from microarray chips showed 1,708 lncRNAs to have been significantly upregulated and 2725 lncRNAs to have been significantly downregulated in HCC tissues. Via validation in 50 HCC patients, a novel lncRNA lncRNA-4045 was found significantly upregulated in HCC tissues. Additionally, a series of in vitro experiments showed that lncRNA-4045 promoted the proliferation, invasion, and migration of HCC cell lines, and inhibited the apoptosis of HCC cell lines. The results of qRT-PCR in HCC tissues showed that the expression levels of AKR1B10 were significantly positively correlated with lncRNA-4045. LncRNA-4045 knockdown significantly down-regulated AKR1B10 protein expression, and overexpression of lncRNA-4045 led to significant up-regulation of AKR1B10 protein in HCC cell lines. Lastly, down-regulation of AKR1B10 could partially eliminate the enhancement of cell proliferation induced by lncRNA-4045 overexpression, while up-regulation of AKR1B10 was shown to enhance those effects. CONCLUSION: LncRNA-4045 may promote HCC via enhancement of the expression of AKR1B10 protein.

7.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676021

ABSTRACT

This study develops an adaptive sliding mode control approach for a drilling tool attitude adjustment system, aiming at solving the problems of model uncertainties and insufficient ability of disturbance suppression during the regulation behavior. To further improve the performance of the position-tracking loop in terms of response time, tracking accuracy, and robustness, a state observer based on an improved radial basis function is designed to approximate the model uncertainties, a valve dead-zone compensate controller is used to reduce control deviation, an adaptive sliding mode controller is designed to improve the position-tracking precision and attenuate sliding mode chattering. Finally, simulation and experimental results are carried out to verify the observability of the model uncertainties and position-tracking errors of the drilling tool attitude adjustment system, which can effectively improve the position-tracking performance and robustness of the drilling tool attitude adjustment system.

8.
Planta ; 258(3): 68, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598130

ABSTRACT

MAIN CONCLUSION: We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Fertility/genetics , Indoleacetic Acids , Reproduction
9.
Opt Express ; 31(14): 22660-22670, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475371

ABSTRACT

Maxwellian display, as an effective solution to the vergence accommodation conflict in near-eye displays (NEDs), has demonstrated its unique advantages in many aspects, such as the ability to provide sharp images within a certain depth of field (DOF) without being affected by the eye's focus. In recent years, the appearance of holographic Maxwellian displays has addressed the shortcomings of traditional Maxwellian displays, meeting the demands for flexible control parameters, aberration-free designing, and expanded eyebox. Nonetheless, the human eye's requirement for immersion still leaves room for a significant improvement in terms of the field-of-view (FOV). In this paper, we propose a large FOV holographic Maxwellian display based on spherical crown diffraction. The proposed spherical-crown holographic Maxwellian display theoretically can cover the full FOV required by the human eyes without complex optical paths and has flexible control of performance parameters such as DOF and image quality. We have successfully demonstrated the feasibility of the spherical crown diffraction model in lensless holographic Maxwellian displays, and it is expected to have practical applications in the field of holographic Maxwellian NEDs in the future.

10.
J Biochem Mol Toxicol ; 37(4): e23288, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36756790

ABSTRACT

Long noncoding RNA (lncRNA) (GABPB1-IT1) has been reported to be downregulated in lung cancer, while its expression and function in other cancers are unknown. In this study, the expression levels of GABPB1-IT1 in tissue samples from 62 ccRCC patients were measured by performing RT-qPCR. Potential base pairing formed between GABPB1-IT1 and miR-21 was explored using the online program IntaRNA 2.0 and further confirmed by Dual-luciferase activity assay and RNA pulldown assay. The role of GABPB1-IT1 and miR-21 in regulating the expression of PTEN was evaluated by RT-qPCR and Western blot. The role of GABPB1-IT1, miR-21, and PTEN in regulating the proliferation of Caki-2 cells was explored by CCK-8 assay. It was observed that GABPB1-IT1 was downregulated in ccRCC and predicted poor survival. GABPB1-IT1 directly interacted with miR-21, while it did not regulate the expression of each other. Moreover, upregulation of PTEN, which is a target of miR-21, was observed in ccRCC cells with overexpression of GABPB1-IT1. Overexpression of GABPB1-IT1 and PTEN decreased the proliferation rates of ccRCC cells. In addition, overexpression of GABPB1-IT1 reduced the enhancing effects of miR-21 on cell proliferation. Therefore, GABPB1-IT1 may upregulate PTEN by sponging miR-21 in ccRCC to inhibit cancer cell proliferation. Our study characterized a novel GABPB1-IT1/miR-21/PTEN axis in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , GA-Binding Protein Transcription Factor/genetics , GA-Binding Protein Transcription Factor/metabolism
11.
BMC Plant Biol ; 22(1): 327, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35799123

ABSTRACT

BACKGROUND: Sassafras has been considered to belong to trib. Laureae of Lauraceae and has been assumed to have unisexual flowers. However, recent molecular phylogenetic studies have consistently suggested that Sassafras does not belong to the trib. Laureae but to Cinnamomeae and that it is nested within Cinnamomum. A recent morphological study revealed that one of the Asian species, S. randaiense, possesses bisexual flowers that are plesiomorphic in the family Lauraceae. As reports on the flower structure of the second Asian species, S. tzumu, have been contradictory, we wanted to ascertain if it has bisexual flowers or not. If the flowers were bisexual, could earlier reports that they were unisexual have been based on dichogamous flowering? RESULTS: In this study, we investigated two populations of S. tzumu. We found that this species has determinate botryoid racemes, and possesses bisexual flowers. Among the three extant species, S. tzumu is more similar to its sister species S. randaiense but markedly different from the American S. albidum: the two Asian species possess bisexual flowers while the American species has unisexual flowers. The bisexual flower of S. tzumu is protogynous, and shows two phenological phases typical of Lauraceae: 1) in a flower, the pistil functions first, the stigma is fresh and white, stamens of the outer two whorls are spreading, anthers do not open, and the staminodes secrete nectar at this stage; 2) in the second phase, the stigma becomes brown, staminodes are withered, stamens of the third whorl stand up and surround the pistil, glands of the third whorl of stamens secrete nectar, and the anthers open and release pollen. CONCLUSIONS: The similarity of racemose inflorescences between Sassafras and some members of Laureae were caused by parallel evolution; the racemose inflorescence of ancestral Sassafras originated from the thyrsoid-cymose inflorescence in Cinnamomum. The Asian species S. tzumu and S. randaiense possess bisexual flowers with two phenological phases, the American S. albidum evolved unisexual flowers independently from other clades with unisexual flowers in the Lauraceae, i.e., the Laureae, Alseodaphnopsis in the Perseeae and the unisexual clade in the Ocotea complex of the Cinnamomeae.


Subject(s)
Lauraceae , Sassafras , Flowers/anatomy & histology , Phylogeny , Plant Nectar
12.
J Transl Med ; 20(1): 57, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35101062

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in the development of hepatocellular carcinoma (HCC). We aimed to investigate the function of LINC01146 in HCC. METHODS: The expression of LINC01146 in HCC tissues was explored via The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and was verified using quantitative real-time polymerase chain reaction (qRT-PCR) in our HCC cohort. Kaplan-Meier analysis was used to assess the relationship between LINC01146 and the prognosis of HCC patients. Cell Counting Kit 8, colony formation assays, Transwell assays, flow cytometric assays, and tumour formation models in nude mice were conducted to reveal the effects of LINC01146 on HCC cells both in vitro and in vivo. Bioinformatic methods were used to explore the possible potential pathways of LINC01146 in HCC. RESULTS: LINC01146 was significantly decreased in HCC tissues compared with adjacent normal tissues and was found to be related to the clinical presentations of malignancy and the poor prognosis of HCC patients. Overexpression of LINC01146 inhibited the proliferation, migration, and invasion of HCC cells in vitro, while promoting their apoptosis. In contrast, downregulation of LINC01146 exerted the opposite effects on HCC cells in vitro. In addition, overexpression of LINC01146 significantly inhibited tumour growth, while downregulation of LINC01146 promoted tumour growth in vivo. Furthermore, the coexpressed genes of LINC01146 were mainly involved in the "metabolic pathway" and "complement and coagulation cascade pathway". CONCLUSION: LINC01146 expression was found to be decreased in HCC tissues and associated with the prognosis of HCC patients. It may serve as a cancer suppressor and prognostic biomarker in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Nude , Phenotype , Prognosis , RNA, Long Noncoding/genetics
13.
Cancer Cell Int ; 22(1): 349, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376832

ABSTRACT

HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.

14.
BMC Cancer ; 22(1): 1098, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289466

ABSTRACT

BACKGROUND: Increasing evidence shows that liver-specific long non-coding RNAs (lncRNAs) play important roles in the development of hepatocellular carcinoma (HCC). We identified a novel liver-specific lncRNA, FAM99A, and examined its clinical significance and biological functions in HCC. METHODS: The expression level and clinical value of FAM99A in HCC were examined using The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases, and were further verified using quantitative real-time polymerase chain reaction (qRT-PCR) in our HCC cohort. Univariate and multivariate Cox proportional hazards regression models were also applied to identify independent prognostic indicators for HCC patients. Cell counting kit-8, colony formation, and Transwell assays were performed to evaluate the effects of FAM99A on the proliferation, migration, and invasion abilities of HCC cells in vitro. A subcutaneous xenograft tumor model was implemented to determine the effect of FAM99A on the tumor growth of HCC cells in vivo. RNA pull-down and mass spectrometry assays were performed to reveal the potential molecular mechanisms of FAM99A in HCC. RESULTS: The three public online databases and qRT-PCR data showed that FAM99A was frequently downregulated in HCC tissues and inversely correlated with microvascular invasion and advanced histological grade of HCC patients. Kaplan-Meier survival analysis indicated that decreased FAM99A was significantly associated with poor overall survival of HCC patients based on TCGA database (P = 0.040), ICGC data portal (P < 0.001), and our HCC cohort (P = 0.010). A multivariate Cox proportional hazards regression model based on our HCC cohort suggested that FAM99A was an independent prognostic factor of overall survival for HCC patients (hazard ratio: 0.425, P = 0.039). Upregulation of FAM99A suppressed the proliferation, colony formation, migration, and invasion capacities of HCC cells in vitro, and knockdown of FAM99A had the opposite effects. A subcutaneous xenograft tumor model demonstrated that overexpression of FAM99A significantly inhibited the tumor growth of HCC cells in vivo. Seven tumor-related proteins (PCBP1, SRSF5, SRSF6, YBX1, IGF2BP2, HNRNPK, and HNRNPL) were recognized as possible FAM99A-binding proteins by the RNA pull-down and mass spectrometry assays. CONCLUSION: Our results suggest that FAM99A exerts cancer-inhibiting effects on HCC progression, and it may be a promising prognostic indicator for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers , Cell Proliferation/genetics , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Phosphoproteins/genetics
15.
BMC Anesthesiol ; 22(1): 271, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008759

ABSTRACT

BACKGROUND: Dexmedetomidine has controversial influence on cardiac electrophysiology. The aim of this study was to explore the effects of dexmedetomidine on perioperative cardiac electrophysiology in patients undergoing general anesthesia. METHODS: Eighty-one patients were randomly divided into four groups: groups D1, D2, D3 receiving dexmedetomidine 1, 1, 0.5 µg/kg over 10 min and 1, 0.5, 0.5 µg/kg/h continuous infusion respectively, and control group (group C) receiving normal saline. Twelve-lead electrocardiograms were recorded at the time before dexmedetomidine/normal saline infusion (T1), loading dose finish (T2), surgery ending (T6), 1 h (T7) after entering PACU, 24 h (T8), 48 h (T9), 72 h (T10) and 1 month (T11) postoperatively. Cardiac circulation efficiency (CCE) were also recorded. RESULTS: Compared with group C, QTc were significantly increased at T2 in groups D1 and D2 while decreased at T7 and T8 in group D3 (P < 0.05), iCEB were decreased at T8 (P < 0.05). Compared with group D1, QTc at T2, T6, T7, T9 and T10 and iCEB at T8 were decreased, and CCE at T2-T4 were increased in group D3 significantly (P < 0.05). Compared with group D2, QTc at T2 and iCEB at T8 were decreased and CCE at T2 and T3 were increased in group D3 significantly (P < 0.05). CONCLUSIONS: Dexmedetomidine at a loading dose of 0.5 µg/kg and a maintenance dose of 0.5 µg/kg/h can maintain stability of cardiac electrophysiology during perioperative period and has no significant adverse effects on CCE. TRIAL REGISTRATION: ClinicalTrials.gov NCT04577430 (Date of registration: 06/10/2020).


Subject(s)
Dexmedetomidine , Anesthesia, General , Dexmedetomidine/adverse effects , Electrophysiologic Techniques, Cardiac , Humans , Saline Solution
16.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336477

ABSTRACT

With the ongoing digitalization of industry, imaging sensors are becoming increasingly important for industrial process control. In addition to direct imaging techniques such as those provided by video or infrared cameras, tomographic sensors are of interest in the process industry where harsh process conditions and opaque fluids require non-intrusive and non-optical sensing techniques. Because most tomographic sensors rely on complex and often time-multiplexed excitation and measurement schemes and require computationally intensive image reconstruction, their application in the control of highly dynamic processes is often hindered. This article provides an overview of the current state of the art in fast process tomography and its potential for use in industry.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
17.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163981

ABSTRACT

Supercapacitors have gained e wide attention because of high power density, fast charging and discharging, as well as good cycle performance. Recently, expanded graphite (EG) has been widely investigated as an effective electrode material for supercapacitors owing to its excellent physical, chemical, electrical, and mechanical properties. Based on charge storage mechanism, supercapacitors have been divided into symmetric, asymmetric, and hybrid supercapacitors. Here, we review the study progress of EG-based materials to be electrode materials. Furthermore, we discuss the application prospects and challenges of EG-based materials in supercapacitors.

18.
J Sci Food Agric ; 102(10): 4250-4265, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35040129

ABSTRACT

BACKGROUND: Theabrownin (TB), a high macromolecular compound and a characteristic component of Pu-erh tea, is able to markedly regulate blood lipid and glucose metabolism. We hypothesized that TB could ameliorate metabolic syndrome induced by high-fat, high-sugar and high-salt diet (HFSSD). RESULTS: To test these hypotheses, we fed rats with HFSSD and administered a gavage of TB. HFSSD successfully induced metabolic syndrome in rats. TB significantly improved serum lipid status, prevented obesity and fasting blood glucose (FBG) and glycosylated hemoglobin (GHbAIc) in rats. After TB intervention, Firmicutes/Bacteroides (F/B) ratio was greatly reduced and showed a dose-effect relationship. TB promoted the reproduction of Bacteroidetes such as prevotella_sp._CAG:1031, prevotella_sp._MGM2 and Bacteroides_sartorii, and inhibited the reproduction of Firmicutes such as roseburia_sp._1XD42-69 and roseburia_sp._831b. CONCLUSION: In HFSSD mode, prevotella_sp._CAG:1031 was one of the main dominant characteristic bacteria of TB targeting regulation, while roseburia_sp._1XD42-69 mainly inhibitory intestinal bacteria, which help to reduce body weight, TG and blood sugar levels of HFSSD rats. Glycerophospholipid metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis and insulin resistance were the critical pathway. TB has a high application potential in reducing the risk of metabolic diseases. © 2022 Society of Chemical Industry.


Subject(s)
Metabolic Syndrome , Animals , Bacteroidetes , Catechin/analogs & derivatives , Diet , Diet, High-Fat/adverse effects , Lipids , Metabolic Syndrome/drug therapy , Rats , Sodium Chloride , Tea/chemistry
19.
Zhongguo Zhong Yao Za Zhi ; 47(4): 906-912, 2022 Feb.
Article in Zh | MEDLINE | ID: mdl-35285189

ABSTRACT

As an important active ingredient in the rare Chinese herb Gastrodiae Rhizoma and also the main precursor for gastrodin biosynthesis, 4-hydroxybenzyl alcohol has multiple pharmacological activities such as anti-inflammation, anti-tumor, and anti-cerebral ischemia. The pharmaceutical products with 4-hydroxybenzyl alcohol as the main component have been increasingly favored. At present, 4-hydroxybenzyl alcohol is mainly obtained by natural extraction and chemical synthesis, both of which, however, exhibit some shortcomings that limit the long-term application of 4-hydroxybenzyl alcohol. The wild and cultivated Gastrodia elata resources are limited. The chemical synthesis requires many steps, long time, and harsh reaction conditions. Besides, the resulting by-products are massive and three reaction wastes are difficult to treat. Therefore, how to artificially prepare 4-hydroxybenzyl alcohol with high yield and purity has become an urgent problem facing the medical researchers. Guided by the theory of microbial metabolic engineering, this study employed the genetic engineering technologies to introduce three genes ThiH, pchF and pchC into Escherichia coli for synthesizing 4-hydroxybenzyl alcohol with L-tyrosine. And the fermentation conditions of engineering strain for producing 4-hydroxybenzyl alcohol in shake flask were also discussed. The experimental results showed that under the conditions of 0.5 mmol·L~(-1) IPTG, 15 ℃ induction temperature, and 40 ℃ transformation temperature, M9 Y medium containing 200 mg·L~(-1) L-tyrosine could be transformed into(69±5)mg·L~(-1) 4-hydroxybenzyl alcohol, which has laid a foundation for producing 4-hydroxybenzyl alcohol economically and efficiently by further expanding the fermentation scale in the future.


Subject(s)
Gastrodia , Metabolic Engineering , Benzyl Alcohols , Escherichia coli/genetics , Escherichia coli/metabolism , Gastrodia/chemistry , Tyrosine/metabolism
20.
New Phytol ; 230(5): 1940-1952, 2021 06.
Article in English | MEDLINE | ID: mdl-33651378

ABSTRACT

Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses. Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages. We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.


Subject(s)
Dioxygenases , Triticum , Dioxygenases/genetics , Germination , Plant Proteins/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL