Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Cardiovasc Res ; 2(5): 467-485, 2023 May.
Article in English | MEDLINE | ID: mdl-37693816

ABSTRACT

The pleiotropic benefits of statins in cardiovascular diseases that are independent of their lipid-lowering effects have been well documented, but the underlying mechanisms remain elusive. Here we show that simvastatin significantly improves human induced pluripotent stem cell-derived endothelial cell functions in both baseline and diabetic conditions by reducing chromatin accessibility at transcriptional enhanced associate domain elements and ultimately at endothelial-to-mesenchymal transition (EndMT)-regulating genes in a yes-associated protein (YAP)-dependent manner. Inhibition of geranylgeranyltransferase (GGTase) I, a mevalonate pathway intermediate, repressed YAP nuclear translocation and YAP activity via RhoA signaling antagonism. We further identified a previously undescribed SOX9 enhancer downstream of statin-YAP signaling that promotes the EndMT process. Thus, inhibition of any component of the GGTase-RhoA-YAP-SRY box transcription factor 9 (SOX9) signaling axis was shown to rescue EndMT-associated endothelial dysfunction both in vitro and in vivo, especially under diabetic conditions. Overall, our study reveals an epigenetic modulatory role for simvastatin in repressing EndMT to confer protection against endothelial dysfunction.

2.
Nat Rev Cardiol ; 19(1): 7-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34381190

ABSTRACT

The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Enhancer Elements, Genetic , Heart , Cardiovascular Diseases/genetics , Heart/growth & development , Humans
3.
Nat Genet ; 54(1): 18-29, 2022 01.
Article in English | MEDLINE | ID: mdl-34980917

ABSTRACT

We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans and 3,195 South Asians. We identify 11,165,559 SNP-CpG associations (methylation quantitative trait loci (meQTL), P < 10-14), including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared chromatin state, High-throuhgput chromosome conformation interaction, and association with gene expression, metabolic variation and clinical traits. We use molecular interaction and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For rs6511961 , chromatin immunoprecipitation followed by sequencing (ChIP-seq) validates zinc finger protein (ZNF)333 as the likely trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including rs174548 in FADS1, with the strongest effect in CD8+ T cells, thus linking fatty acid metabolism with immune dysregulation and asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.


Subject(s)
DNA Methylation/genetics , Genetic Variation , Arthritis, Rheumatoid/genetics , Asia , Blood Pressure/genetics , Body Mass Index , CD8-Positive T-Lymphocytes/metabolism , CpG Islands , DNA Replication , Europe , Genome-Wide Association Study , Humans , Leukocytes/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
Nat Commun ; 8(1): 225, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28790305

ABSTRACT

Cardiac regeneration may revolutionize treatment for heart failure but endogenous progenitor-derived cardiomyocytes in the adult mammalian heart are few and pre-existing adult cardiomyocytes divide only at very low rates. Although candidate genes that control cardiomyocyte cell cycle re-entry have been implicated, expression heterogeneity in the cardiomyocyte stress-response has never been explored. Here, we show by single nuclear RNA-sequencing of cardiomyocytes from both mouse and human failing, and non-failing adult hearts that sub-populations of cardiomyocytes upregulate cell cycle activators and inhibitors consequent to the stress-response in vivo. We characterize these subgroups by weighted gene co-expression network analysis and discover long intergenic non-coding RNAs (lincRNA) as key nodal regulators. KD of nodal lincRNAs affects expression levels of genes related to dedifferentiation and cell cycle, within the same gene regulatory network. Our study reveals that sub-populations of adult cardiomyocytes may have a unique endogenous potential for cardiac regeneration in vivo.Adult mammalian cardiomyocytes are predominantly binucleated and unable to divide. Using single nuclear RNA-sequencing of cardiomyocytes from mouse and human failing and non-failing adult hearts, See et al. show that some cardiomyocytes respond to stress by dedifferentiation and cell cycle re-entry regulated by lncRNAs.


Subject(s)
Cell Cycle , Cell Dedifferentiation , Gene Expression Regulation , Heart Failure/genetics , Myocytes, Cardiac/cytology , Nodal Protein/genetics , RNA, Long Noncoding/metabolism , Animals , Gene Regulatory Networks , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , Stress, Physiological , Transcriptome
5.
Cardiovasc Res ; 113(3): 298-309, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28082450

ABSTRACT

Aims: Circular RNA (circRNA) is a newly validated class of single-stranded RNA, ubiquitously expressed in mammalian tissues and possessing key functions including acting as microRNA sponges and as transcriptional regulators by binding to RNA-binding proteins. While independent studies confirm the expression of circRNA in various tissue types, genome-wide circRNA expression in the heart has yet to be described in detail. Methods and results: We performed deep RNA-sequencing on ribosomal-depleted RNA isolated from 12 human hearts, 25 mouse hearts and across a 28-day differentiation time-course of human embryonic stem cell-derived cardiomyocytes. Using purpose-designed bioinformatics tools, we uncovered a total of 15 318 and 3017 cardiac circRNA within human and mouse, respectively. Their abundance generally correlates with the abundance of their cognate linear RNA, but selected circRNAs exist at disproportionately higher abundance. Top highly expressed circRNA corresponded to key cardiac genes including Titin (TTN), RYR2, and DMD. The most abundant cardiac-expressed circRNA is a cytoplasmic localized single-exon circSLC8A1-1. The longest human transcript TTN alone generates up to 415 different exonic circRNA isoforms, the majority (83%) of which originates from the I-band domain. Finally, we confirmed the expression of selected cardiac circRNA by RT-PCR, Sanger sequencing and single molecule RNA-fluorescence in situ hybridization. Conclusions: Our data provide a detailed circRNA expression landscape in hearts. There is a high-abundance of specific cardiac-expressed circRNA. These findings open up a new avenue for future investigation into this emerging class of RNA.


Subject(s)
Embryonic Stem Cells/metabolism , Heart Diseases/genetics , Myocytes, Cardiac/metabolism , RNA/genetics , Animals , Case-Control Studies , Cell Differentiation , Cell Line , Computational Biology , Databases, Genetic , Gene Expression Regulation, Developmental , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Heart Diseases/diagnosis , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Mice , Phenotype , Polymerase Chain Reaction , RNA/metabolism , RNA, Circular , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Single Molecule Imaging , Time Factors
6.
JACC Basic Transl Sci ; 1(7): 590-602, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30167544

ABSTRACT

Cardiovascular disease remains the number one global cause of death and presents as multiple phenotypes in which the interplay between cardiomyocytes and cardiac fibroblasts (CFs) has become increasingly highlighted. Fetal and adult CFs influence neighboring cardiomyocytes in different ways. Thus far, a detailed comparison between the two is lacking. Using a genome-wide approach, we identified and validated 2 crucial players for maintaining the adult primary human CF phenotype. Knockdown of these factors induced significant phenotypical changes, including senescence and reduced collagen gene expression. These may now represent novel therapeutic targets against deleterious functions of CFs in adult cardiovascular disease.

SELECTION OF CITATIONS
SEARCH DETAIL