Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792193

ABSTRACT

The European Union's (EU) agricultural self-sufficiency is challenged by its reliance on imported plant proteins, particularly soy from the Americas, contributing to deforestation and greenhouse gas emissions. Addressing the EU's protein deficit, this study evaluates alternative protein sources for aquaculture, focusing on their nutritional value, elemental content, and polycyclic aromatic hydrocarbons (PAHs). Protein flours from gastropods (Helix pomatia, Arion lusitanicus, Arion vulgaris) and their hepatopancreas, along with plant-based proteins from food industry by-products (oilcakes, coffee grounds, spent brewer's yeast), were analyzed. Results revealed that snail flour contained the highest protein content at 59.09%, significantly outperforming hepatopancreas flour at 42.26%. Plant-based proteins demonstrated substantial nutritional value, with coffee grounds flour exhibiting a remarkable protein content of 71.8% and spent brewer's yeast flour at 57.9%. Elemental analysis indicated high levels of essential minerals such as magnesium in hepatopancreas flour (5719.10 mg/kg) and calcium in slug flour (48,640.11 mg/kg). However, cadmium levels in hepatopancreas flour (11.45 mg/kg) necessitate caution due to potential health risks. PAH concentrations were low across all samples, with the highest total PAH content observed in hepatopancreas flour at 0.0353 µg/kg, suggesting minimal risk of PAH-related toxicity. The analysis of plant-based protein sources, particularly oilcakes derived from sunflower, hemp, flax, and pumpkin seeds, revealed that these by-products not only exhibit high protein contents but present a promising avenue for enhancing the nutritional quality of feed. This study underscores the potential of utilizing gastropod and plant-based by-products as sustainable and nutritionally adequate alternatives to conventional feeds in aquaculture, contributing to the EU's environmental sustainability goals.


Subject(s)
Nutritive Value , Animals , Fishes/metabolism , Animal Feed/analysis , Hepatopancreas/chemistry , Hepatopancreas/metabolism , Plant Proteins/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Aquaculture/methods , Nutrients/analysis
2.
J Hazard Mater ; 476: 135187, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39003804

ABSTRACT

Fish represent a significant source of nutrients but also cause negative health effects due to their bioaccumulation capacity for pollutants. The aim of this study was to examine the transfer of metals from the water of several rivers (Somes, Tisa, Sasar, Lapus, Lapusel) to fish (Caras sp) tissue (subcutaneous fat, muscles, liver, intestines, kidneys, gills, brain, and eyes) and to identify and assess the carcinogenic and non-carcinogenic health risks of Arsenic (As), Cadmium (Cd), Nickel (Ni), Manganese (Mn), Cooper (Cu), Lead (Pb), Chromium (Cr) and Zinc (Zn) through the ingestion of fish (muscles and subcutaneous fat tissues). The obtained results indicated that a diet consisting of fish is particularly vulnerable, particularly in children compared to adults. The risk assessment results were below the threshold limit, although the fish samples contained heavy metals, with values exceeding the permitted limits of Fe (4.41-1604 mg/kg), Cr (727-4155 µg/kg), Zn (4.72-147 mg/kg), and Ni (333-2194 µg/kg). The studied surface waters are characterized by low and high degrees of pollution with heavy metals, as indicated by the heavy metal pollution index scores (HPI: 12.4-86.4) and the heavy metal evaluation index scores (HEI: 1.06-17.6). The considerable pollution levels are attributed to the high Mn content (0.61-49.7 µg/kg), which exceeded the limit up to fifty times. A consistent set of physico-chemical analysis (pH, electrical conductivity, total hardness, turbidity, chloride, sulphate, nitrate, nitrite, ammonium, Ca, Mg, Na, K) was analysed in water samples as well. Considering the water quality index scores (WQI: 16.0-25.2), the surface waters exhibited good quality. Microbiological results indicated the presence of Listeria monocytogenes and atypical colonies of coagulase-positive staphylococcus in fish. In contrast, the surface waters from which fish samples were collected were positive for Escherichia coli, and coliform bacteria intestinal Enterococci. Based on the study's results, it is recommended to exercise caution in the case of children related to the consumption of fish and using the waters for drinking purposes. This study provides important data of considerable novelty to the riparian population, researchers, and even policy makers on the quality status and potential levels of contamination of river waters, fish and the bioaccumulation of heavy metals in fish that may cause adverse effects on human health if consumed, and similarly the heavy metal pollution degree of waters and the non-carcinogenic risk of heavy metals through ingestion and skin absorption of water in children and adults (the study area is a significant source of fisheries).


Subject(s)
Fishes , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Risk Assessment , Humans , Animals , Food Contamination/analysis , Rivers/chemistry , Rivers/microbiology , Dietary Exposure/analysis , Water Microbiology , Child , Environmental Monitoring , Adult
SELECTION OF CITATIONS
SEARCH DETAIL