Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Angiogenesis ; 24(1): 111-127, 2021 02.
Article in English | MEDLINE | ID: mdl-32955682

ABSTRACT

Angiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold. As a proof of concept, we show that this model can be used for studying the angiogenic process and further comparing the angiogenic properties between two different common inbred mouse strains, C57BL/6J and 129S1/SvlmJ. We further show that the newly discovered angiogenesis-regulating gene Padi2 promotes angiogenesis through Dll4/Notch1 signaling by an on-chip mechanistic study. Analysis of the interplay between primary endothelial cells and pericytes in a 3D microfluidic environment assists in the elucidation of the angiogenic response.


Subject(s)
Cell Engineering , Cellular Microenvironment , Endothelial Cells/pathology , Imaging, Three-Dimensional , Microfluidics , Pericytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cell Separation , Cells, Cultured , Down-Regulation , Endothelial Cells/metabolism , Mice, Inbred C57BL , Neovascularization, Pathologic/pathology , Pericytes/metabolism , Protein-Arginine Deiminase Type 2/antagonists & inhibitors , Protein-Arginine Deiminase Type 2/metabolism , Receptors, Notch/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL