Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Inorg Chem ; 59(9): 6528-6540, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286842

ABSTRACT

Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)2 which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)2 undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, α-Na4Zn(PO4)2, contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature ß- and γ-polymorphs, respectively. We furthermore showed that the highly conducting γ-polymorph could be stabilized at room temperature by ball-milling, whereas the ß-polymorph can be stabilized by partial substitution of Zn2+ with Ga3+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.

2.
Nat Mater ; 16(1): 45-56, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27994251

ABSTRACT

The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.

3.
Nat Mater ; 14(2): 230-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25437258

ABSTRACT

Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

4.
Nat Mater ; 12(9): 827-35, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23852398

ABSTRACT

Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li(1+x)Ni(y)Co(z)Mn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru(1-y)Sn(y)O3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g(-1). Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (M(n+)→M((n+1)+)) and anionic (O(2-)→O2(2-)) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.


Subject(s)
Anions/chemistry , Electrodes , Oxides/chemistry , Electrochemical Techniques , Electron Spin Resonance Spectroscopy , Equipment Design , Lithium/chemistry , Oxidation-Reduction , Spectroscopy, Mossbauer , X-Ray Diffraction
5.
Acc Chem Res ; 46(5): 1226-38, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23282038

ABSTRACT

To meet the growing global demand for energy while preserving the environment, it is necessary to drastically reduce the world's dependence on non-renewable energy sources. At the core of this effort will be the ability to efficiently convert, store, transport and access energy in a variety of ways. Batteries for use in small consumer devices have saturated society; however, if they are ever to be useful in large-scale applications such as automotive transportation or grid-storage, they will require new materials with dramatically improved performance. Efforts must also focus on using Earth-abundant and nontoxic compounds so that whatever developments are made will not create new environmental problems. In this Account, we describe a general strategy for the design and development of new insertion electrode materials for Li(Na)-ion batteries that meet these requirements. We begin by reviewing the current state of the art of insertion electrodes and highlighting the intrinsic material properties of electrodes that must be re-engineered for extension to larger-scale applications. We then present a detailed discussion of the relevant criteria for the conceptual design and appropriate selection of new electrode chemical compositions. We describe how the open-circuit voltage of Li-ion batteries can be manipulated and optimized through structural and compositional tuning by exploiting differences in the electronegativity among possible electrode materials. We then discuss which modern synthetic techniques are most sustainable, allowing the creation of new materials via environmentally responsible reactions that minimize the use of energy and toxic solvents. Finally, we present a case study showing how we successfully employed these approaches to develop a large number of new, useful electrode materials within the recently discovered family of transition metal fluorosulfates. This family has attracted interest as a possible source of improved Li-ion batteries in larger scale applications and benefits from a relatively "green" synthesis.

6.
J Am Chem Soc ; 135(10): 3897-903, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23421416

ABSTRACT

We report the direct synthesis of powder Na3Ti2(PO4)3 together with its low-potential electrochemical performance and crystal structure elucidation for the reduced and oxidized phases. First-principles calculations at the density functional theory level have been performed to gain further insight into the electrochemistry of Ti(IV)/Ti(III) and Ti(III)/Ti(II) redox couples in these sodium superionic conductor (NASICON) compounds. Finally, we have validated the concept of full-titanium-based sodium ion cells through the assembly of symmetric cells involving Na3Ti2(PO4)3 as both positive and negative electrode materials operating at an average potential of 1.7 V.


Subject(s)
Phosphates/chemistry , Sodium/chemistry , Titanium/chemistry , Electrochemical Techniques , Electrodes , Molecular Structure , Oxidation-Reduction , Quantum Theory
7.
Nat Mater ; 15(2): 121-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26796721
8.
Nat Mater ; 10(10): 772-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21857675

ABSTRACT

Li-ion batteries have empowered consumer electronics and are now seen as the best choice to propel forward the development of eco-friendly (hybrid) electric vehicles. To enhance the energy density, an intensive search has been made for new polyanionic compounds that have a higher potential for the Fe²âº/Fe³âº redox couple. Herein we push this potential to 3.90 V in a new polyanionic material that crystallizes in the triplite structure by substituting as little as 5 atomic per cent of Mn for Fe in Li(Fe(1-δ)Mn(δ))SO4F. Not only is this the highest voltage reported so far for the Fe²âº/Fe³âº redox couple, exceeding that of LiFePO4 by 450 mV, but this new triplite phase is capable of reversibly releasing and reinserting 0.7-0.8 Li ions with a volume change of 0.6% (compared with 7 and 10% for LiFePO4 and LiFeSO4F respectively), to give a capacity of ~125 mA h g⁻¹.

9.
J Am Chem Soc ; 133(40): 16291-9, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21888392

ABSTRACT

Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Li(+)-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.

10.
Nat Mater ; 9(1): 68-74, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19946280

ABSTRACT

Li-ion batteries have contributed to the commercial success of portable electronics, and are now in a position to influence higher-volume applications such as plug-in hybrid electric vehicles. Most commercial Li-ion batteries use positive electrodes based on lithium cobalt oxides. Despite showing a lower voltage than cobalt-based systems (3.45 V versus 4 V) and a lower energy density, LiFePO(4) has emerged as a promising contender owing to the cost sensitivity of higher-volume markets. LiFePO(4) also shows intrinsically low ionic and electronic transport, necessitating nanosizing and/or carbon coating. Clearly, there is a need for inexpensive materials with higher energy densities. Although this could in principle be achieved by introducing fluorine and by replacing phosphate groups with more electron-withdrawing sulphate groups, this avenue has remained unexplored. Herein, we synthesize and show promising electrode performance for LiFeSO(4)F. This material shows a slightly higher voltage (3.6 V versus Li) than LiFePO(4) and suppresses the need for nanosizing or carbon coating while sharing the same cost advantage. This work not only provides a positive-electrode contender to rival LiFePO(4), but also suggests that broad classes of fluoro-oxyanion materials could be discovered.

11.
Inorg Chem ; 50(16): 7662-8, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21749085

ABSTRACT

A novel hydrated fluoroselenate NaCoSeO(4)F·2H(2)O has been synthesized, and its structure determined. Like its sulfate homologue, NaCoSO(4)F·2H(2)O, the structure contains one-dimensional chains of corner-sharing MO(4)F(2) octahedra linked together through F atoms sitting in a trans configuration with respect to each other. The magnetic properties of the two phases have been investigated using powder neutron diffraction and susceptibility measurements which indicate antiferromagnetic ordering along the length of the chains and result in a G-type antiferromagnetic ground state. Both compounds exhibit a Néel temperature near 4 K, and undergo a field-induced magnetic phase transition in fields greater than 3 kOe.

12.
Nat Mater ; 8(2): 120-5, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19151701

ABSTRACT

Present Li-ion batteries for portable electronics are based on inorganic electrodes. For upcoming large-scale applications the notion of materials sustainability produced by materials made through eco-efficient processes, such as renewable organic electrodes, is crucial. We here report on two organic salts, Li(2)C(8)H(4)O(4) (Li terephthalate) and Li(2)C(6)H(4)O(4)(Li trans-trans-muconate), with carboxylate groups conjugated within the molecular core, which are respectively capable of reacting with two and one extra Li per formula unit at potentials of 0.8 and 1.4 V, giving reversible capacities of 300 and 150 mA h g(-1). The activity is maintained at 80 degrees C with polyethyleneoxide-based electrolytes. A noteworthy advantage of the Li(2)C(8)H(4)O(4) and Li(2)C(6)H(4)O(4) negative electrodes is their enhanced thermal stability over carbon electrodes in 1 M LiPF(6) ethylene carbonate-dimethyl carbonate electrolytes, which should result in safer Li-ion cells. Moreover, as bio-inspired materials, both compounds are the metabolites of aromatic hydrocarbon oxidation, and terephthalic acid is available in abundance from the recycling of polyethylene terephthalate.

13.
Inorg Chem ; 49(14): 6461-7, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20545306

ABSTRACT

As a potential cathode material for the ICD lithium battery, one advantage of Ag(6)Mo(2)O(7)F(3)Cl (SMOFC) is its enhanced gravimetric capacity of ca. 133 mAh/g above 3 V (vs Li(+)/Li) delivered by two biphasic transitions at 3.46 and 3.39 V (vs Li(+)/Li). The unique crystal structure of SMOFC enables a high silver ion conduction: sigma( perpendicular[001]) = 3.10(-2) S/cm (+/-2.10(-2) S/cm) and sigma(//[001]) = 4.10(-3) S/cm (+/-2.10(-3) S/cm) and, hence, an excellent discharge rate capability. Lithium insertion has been monitored by in situ XRD measurements with HRTEM investigations. There is a linear isotropic collapse of the structure leading to a fully amorphous structure beyond four inserted lithiums.


Subject(s)
Lithium/chemistry , Molybdenum/chemistry , Silver Compounds/chemistry , Silver/chemistry , Crystallography, X-Ray , Defibrillators, Implantable , Electric Power Supplies , Electrodes , Silver Compounds/chemical synthesis , X-Ray Diffraction
14.
Nat Mater ; 7(11): 916-21, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18849978

ABSTRACT

Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

15.
Science ; 252(5008): 944-6, 1991 May 17.
Article in English | MEDLINE | ID: mdl-17843227

ABSTRACT

Thin-film heterostructures of Bi(4)Ti(3)O(12)Bi(2)Sr(2)CuO(6+x), have been grown on single crystals of SrTiO(3), LaAlO(3), and MgAl(2)O(4) by pulsed laser deposition. X-ray diffraction studies show the presence of c-axis orientation only; Rutherford backscattering experiments show the composition to be close to the nominal stoichiometry. The films are ferroelectric and exhibit a symmetric hysteresis loop. The remanent polarization was 1.0 microcoulomb per square centimeter, and the coercive field was 2.0 x 10(5) volts per centimeter. Similar results were obtained with YBa(2)Cu(3)O(7-x) and Bi(2)Sr(2)CaCu(2)O(8+x), and single-crystal Bi(2)Sr(2)CuO(6+x)as the bottom electrodes. These films look promising for use as novel, lattice-matched, epitaxial ferroelectric film/electrode heterostructures in nonvolatile memory applications.

16.
Science ; 235(4794): 1373-6, 1987 Mar 13.
Article in English | MEDLINE | ID: mdl-17829979

ABSTRACT

Structural, magnetic, and electronic properties of compounds in the series La2-xSrx CuO4-y for 0.05

18.
Micron ; 37(5): 459-64, 2006.
Article in English | MEDLINE | ID: mdl-16376088

ABSTRACT

Although widely used, the most promising Li-based technologies still need to seek new materials concepts to satisfy the increasing demands for energy storage worldwide. We report a layered electrode material, Cu(2.33)V4O11, for which the valency of copper, vanadium and thus indirectly the oxygen stoichiometry need to be investigated during the electrochemical cycle. High-resolution electron energy loss spectroscopy (HREELS) allows us to perform these measurements at the nanometer scale.

19.
J Phys Chem B ; 109(33): 15868-75, 2005 Aug 25.
Article in English | MEDLINE | ID: mdl-16853016

ABSTRACT

Lithium alkyl carbonates ROCO2Li result from the reductive decomposition of dialkyl carbonates, which are the organic solvents used in the electrolytes of common lithium-ion batteries. They play a crucial role in the formation of surface layers at the electrode/electrolyte interfaces. In this work, we report on the X-ray photoelectron spectroscopy (XPS) characterization of synthesized lithium methyl and ethyl carbonates. Using Hartree-Fock ab initio calculations, we interpret and simulate the valence spectra of both samples, as well as several other Li alkyl carbonates involved in Li-ion batteries. We show that Li alkyl carbonates can be identified at the electrode's surface by a combined analysis of XPS core peaks and valence spectra.

20.
Nat Chem ; 7(1): 19-29, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25515886

ABSTRACT

Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL