Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 167(6): 1481-1494.e18, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912058

ABSTRACT

Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.


Subject(s)
Autism Spectrum Disorder/genetics , Blood-Brain Barrier/physiopathology , Large Neutral Amino Acid-Transporter 1/metabolism , Mutation , Amino Acids/administration & dosage , Amino Acids/metabolism , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/pathology , Brain/physiopathology , Female , Humans , Infant , Infant, Newborn , Large Neutral Amino Acid-Transporter 1/genetics , Male , Mice , Mice, Knockout , Pedigree , Protein Biosynthesis , Receptor, TIE-2/genetics
2.
Exp Mol Med ; 50(8): 1-7, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30089840

ABSTRACT

Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype-along with phenotype-based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice.


Subject(s)
Genomics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/therapy , Precision Medicine , Biomedical Research , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL