Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
Add more filters

Publication year range
1.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173918

ABSTRACT

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Subject(s)
Chromatin/genetics , Microsatellite Repeats/physiology , Trinucleotide Repeat Expansion/physiology , Adult , Brain/cytology , Brain/pathology , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/physiology , Cell Line , Chromatin/physiology , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology , CpG Islands/genetics , CpG Islands/physiology , DNA/genetics , Disease/etiology , Disease/genetics , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Genome, Human/genetics , Humans , Male , Microsatellite Repeats/genetics , Trinucleotide Repeat Expansion/genetics
2.
Metabolomics ; 20(2): 31, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418685

ABSTRACT

INTRODUCTION: The chromosome 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with a wide range of brain-related phenotypes including schizophrenia spectrum disorders (SCZ), autism spectrum disorders (ASD), anxiety disorders and attention deficit disorders (ADHD). The typically deleted region in 22q11.2DS contains multiple genes which haploinsufficiency has the potential of altering the protein and the metabolic profiles. OBJECTIVES: Alteration in metabolic processes and downstream protein pathways during the early brain development may help to explain the increased prevalence of the observed neurodevelopmental phenotypes in 22q11.2DS. However, relatively little is known about the correlation of dysregulated protein/metabolite expression and neurobehavioral impairments in individuals who developed them over time. METHODS: In this study, we performed untargeted metabolic and proteomic analysis in plasma samples derived from 30 subjects including 16 participants with 22q11.2DS and 14 healthy controls (TD) enrolled in a longitudinal study, aiming to identify a metabolic and protein signature informing about the underlying mechanisms involved in disease development and progression. The metabolic and proteomic profiles were also compared between the participants with 22q11.2DS with and without various comorbidities, such as medical involvement, psychiatric conditions, and autism spectrum disorder (ASD) to detect potential changes among multiple specimens, collected overtime, with the aim to understand the basic underlying mechanisms involved in disease development and progression. RESULTS: We observed a large number of statistically significant differences in metabolites between the two groups. Among them, the levels of taurine and arachidonic acid were significantly lower in 22q11.2DS compared to the TD group. In addition, we identified 16 proteins that showed significant changes in expression levels (adjusted P < 0.05) in 22q11.2DS as compared to TD, including those involved in 70 pathways such as gene expression, the PI3K-Akt signaling pathway and the complement system. Within participants with 22q11.2DS, no significant changes in those with and without medical or psychiatric conditions were observed. CONCLUSION: To our knowledge, this is the first report on plasma metabolic and proteomic profiling and on the identification of unique biomarkers in 22q11.2DS. These findings may suggest the potential role of the identified metabolites and proteins as biomarkers for the onset of comorbid conditions in 22q11.2DS. Ultimately, the altered protein pathways in 22q11.2DS may provide insights of the biological mechanisms underlying the neurodevelopmental phenotype and may provide missing molecular outcome measures in future clinical trials to assess early-diagnosis treatment and the efficacy of response to targeted treatment.


Subject(s)
Autism Spectrum Disorder , DiGeorge Syndrome , Humans , DiGeorge Syndrome/complications , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Longitudinal Studies , Proteomics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/complications , Phosphatidylinositol 3-Kinases , Metabolomics
3.
Reprod Biol Endocrinol ; 22(1): 71, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907244

ABSTRACT

BACKGROUND: Premutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, defined as between 55 and 200 CGGs, have been implicated in fragile X-associated primary ovarian insufficiency (FXPOI). Only 20% of female premutation carriers develop early ovulatory dysfunction, the reason for this incomplete penetrance is unknown. This study validated the mathematical model in premutation alleles, after assigning each allele a score representing allelic complexity. Subsequently, allelic scores were used to investigate the impact of allele complexity on age at amenorrhea for 58 premutation cases (116 alleles) previously published. METHODS: The allelic score was determined using a formula previously described by our group. The impact of each allelic score on age at amenorrhea was analyzed using Pearson's test and a contour plot generated to visualize the effect. RESULTS: Correlation of allelic score revealed two distinct complexity behaviors in premutation alleles. No significant correlation was observed between the allelic score of premutation alleles and age at amenorrhea. The same lack of significant correlation was observed regarding normal-sized alleles, despite a nearly significant trend. CONCLUSIONS: Our results suggest that the use of allelic scores combination have the potential to explain female infertility, namely the development of FXPOI, or ovarian dysfunction, despite the lack of correlation with age at amenorrhea. Such a finding is of great clinical significance for early identification of females at risk of ovulatory dysfunction, enhancement of fertility preservation techniques, and increasing the probability for a successful pregnancy in females with premutations. Additional investigation is necessary to validate this hypothesis.


Subject(s)
Alleles , Amenorrhea , Fragile X Mental Retardation Protein , Primary Ovarian Insufficiency , Humans , Female , Fragile X Mental Retardation Protein/genetics , Amenorrhea/genetics , Primary Ovarian Insufficiency/genetics , Adult , Heterozygote , Mutation , Fragile X Syndrome/genetics , Age Factors , Young Adult , Adolescent
4.
Mov Disord ; 39(3): 519-525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38124331

ABSTRACT

BACKGROUND: Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE: To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS: This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS: Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS: Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Fragile X Syndrome , Movement Disorders , Adult , Humans , Male , Executive Function/physiology , Tremor , Longitudinal Studies , Cross-Sectional Studies , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/complications , Ataxia , Movement Disorders/complications
5.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230215, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113493

ABSTRACT

OBJECTIVE: The purpose of the present study was to assess the psychiatric manifestations of early to middle stages of fragile X-associated tremor-ataxia syndrome (FXTAS) and their relationship with executive function and FMR1 cytosine-guanine-guanine (CGG) repeat numbers across genders. METHODS: Cross-sectional data from 100 participants (62 men, 38 women; mean±SD age=67.11±7.90 years) with FXTAS stage 1, 2, or 3 were analyzed, including demographic information, cognitive measures, psychiatric assessments (Symptom Checklist-90-Revised and Behavioral Dyscontrol Scale-II [BDS-II]), and CGG repeat number. RESULTS: Participants with FXTAS stage 3 exhibited significantly worse psychiatric outcomes compared with participants with either stage 1 or 2, with distinct gender-related differences. Men showed differences in anxiety and hostility between stage 3 and combined stages 1 and 2, whereas women exhibited differences in anxiety, depression, interpersonal sensitivity, obsessive-compulsive symptoms, and somatization, as well as in the Global Severity Index, the Positive Symptom Distress Index, and the Positive Symptom Total. Among male participants, negative correlations were observed between BDS-II total scores and obsessive-compulsive symptoms, as well as between anxiety and CGG repeat number. CONCLUSIONS: These findings suggest that even at early FXTAS stages, patients have significant cognitive and other psychiatric symptoms, with notable gender-specific differences. This study underscores the clinical and prognostic relevance of comorbid psychiatric conditions in FXTAS, highlighting the need for early intervention and targeted support for individuals with relatively mild motor deficits.

6.
Article in English | MEDLINE | ID: mdl-39320553

ABSTRACT

PURPOSE: Fragile X syndrome (FXS) is a neurodevelopmental disorder, caused by an CGG repeat expansion (FM, > 200 CGG) in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Female carriers of a premutation (PM; 55-200 CGG) can transmit the PM allele, which, depending on the CGG allele size, can expand to an allele in the FM range in the offspring. METHODS: Carrier screening for FMR1 PM is not available in Thailand. This study aimed to investigate the prevalence of PM carriers among Thai reproductive women at the tertiary hospital. A total of 1250 females participated in this study; ages ranged from 20 to 45 years, mean of 30 years (S.D. = 6.27). RESULTS: Two carriers of a premutation allele, with 32,62 and 32,69 CGG repeats respectively, were identified. This corresponds to 1 in 600 women or 0.17% of the population. Further, three women carrying a gray zone allele (45-54 CGG repeats) were identified (29,51; 29,49; and 30,47 CGG repeats) which equals to 1:400 women or 0.25% of the population. No FM case was detected. CONCLUSIONS: This study heightens the importance of PM carrier screening of women of reproductive age, particularly for the higher risk of developing fragile X-associated primary ovarian insufficiency (FXPOI). Early identification of PM carrier status enhances family planning and fecundity alternatives and improves reproductive health outcomes leading to a better life.

7.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125677

ABSTRACT

In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.


Subject(s)
Ataxia , Fragile X Syndrome , Glucuronidase , Klotho Proteins , Tremor , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Alleles , Apolipoproteins E/genetics , Ataxia/genetics , Fragile X Syndrome/genetics , Genetic Predisposition to Disease , Genotype , Glucuronidase/genetics , Penetrance , Tremor/genetics
8.
Am J Hum Genet ; 107(3): 555-563, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32758449

ABSTRACT

Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.


Subject(s)
Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Autism Spectrum Disorder/pathology , Child , DNA Methylation/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epigenesis, Genetic/genetics , Female , Humans , Intellectual Disability/pathology , Male , Mutation/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Transcriptome/genetics
9.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31870554

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Heart Defects, Congenital/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Cohort Studies , Female , Genome-Wide Association Study , Heart Defects, Congenital/pathology , Humans , Linkage Disequilibrium , Male , Phenotype , Proto-Oncogene Mas , Segmental Duplications, Genomic
10.
J Med Genet ; 59(7): 687-690, 2022 07.
Article in English | MEDLINE | ID: mdl-34193467

ABSTRACT

BACKGROUND: While an association between full mutation CGG-repeat expansions of the Fragile X Mental Retardation 1 (FMR1) gene and connective tissue problems are clearly described, problems in fragile X premutation carriers (fXPCs) CGG-repeat range (55-200 repeats) of the FMR1 gene may be overlooked. OBJECTIVE: To report five FMR1 fXPCs cases with the hypermobile Ehlers-Danlos syndrome (hEDS) phenotype. METHODS: We collected medical histories and FMR1 molecular measures from five cases who presented with joint hypermobility and loose connective tissue and met inclusion criteria for hEDS. RESULTS: Five cases were female and ranged between 16 and 49 years. The range of CGG-repeat allele sizes ranged from 66 to 150 repeats. All had symptoms of hEDS since early childhood. Commonalities in molecular pathogenesis and coexisting conditions between the fXPCs and hEDS are also presented. The premutation can lead to a reduction of fragile X mental retardation protein, which is crucial in maintaining functions of the extracellular matrix-related proteins, particularly matrix metallopeptidase 9 and elastin. Moreover, elevated FMR1 messenger RNA causes sequestration of proteins, which results in RNA toxicity. CONCLUSION: Both hEDS phenotype and premutation involvement may co-occur because of related commonalities in pathogenesis.


Subject(s)
Ehlers-Danlos Syndrome , Fragile X Syndrome , Child, Preschool , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Heterozygote , Humans , Male , Phenotype , Trinucleotide Repeat Expansion/genetics
11.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686279

ABSTRACT

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. Currently, it is not possible to determine when and if individual premutation carriers will develop FXTAS. Thus, with the aim to identify biomarkers for early diagnosis, development, and progression of FXTAS, along with associated dysregulated pathways, we performed blood proteomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct groups: those who developed symptoms of FXTAS (converters, CON) over time (at subsequent visits) and those who did not (non-converters, NCON). We compared these groups to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern blot and PCR analysis. The proteomic profile was obtained by liquid chromatography mass spectrometry (LC-MS/MS). We identified several significantly differentiated proteins between HC and the PM groups at Visit 1 (V1), Visit 2 (V2), and between the visits. We further reported the dysregulated protein pathways, including sphingolipid and amino acid metabolism. Our findings are in agreement with previous studies showing that pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered and appear to contribute to the development of FXTAS. Lastly, we compared the blood proteome of the PM who developed FXTAS over time with the CSF proteome of the FXTAS patients recently reported and found eight significantly differentially expressed proteins in common. To our knowledge, this is the first report of longitudinal proteomic profiling and the identification of unique biomarkers and dysregulated protein pathways in FXTAS.


Subject(s)
Proteome , Proteomics , Humans , Chromatography, Liquid , Longitudinal Studies , Tandem Mass Spectrometry , Tremor , Biomarkers , Fragile X Mental Retardation Protein/genetics
12.
J Intellect Disabil ; 26(3): 800-807, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33998336

ABSTRACT

Fragile X syndrome (FXS) has a classic phenotype, however its expression can be variable among full mutation males. This is secondary to variable methylation mosaicisms and the number of CGG triplet repeats in the non-coding region of the Fragile X Mental Retardation 1 (FMR1) gene, producing a variable expression of the Fragile X Mental Retardation Protein (FMRP). Here we report a family with several individuals affected by FXS: a boy with a hypermethylated FMR1 mutation and a classic phenotype; a man with an FMR1 gene mosaicism in the range of premutation (PM) and full mutation (FM), who has a mild phenotype due to which FXS was initially disregarded; and the cases of four women with a FM and mosaicism. This report highlights the importance of DNA molecular testing for the diagnosis of FXS in patients with developmental delay, intellectual disability and/or autism due to the variable phenotype that occurs in individuals with FMR1 mosaicisms.


Subject(s)
Fragile X Syndrome , Intellectual Disability , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Male , Mosaicism , Mutation , Phenotype
13.
Mov Disord ; 36(8): 1935-1943, 2021 08.
Article in English | MEDLINE | ID: mdl-33760253

ABSTRACT

BACKGROUND: Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disease of late onset developed by carriers of the premutation in the fragile x mental retardation 1 (FMR1) gene. Pathological features of neurodegeneration in fragile X-associated tremor/ataxia syndrome include toxic levels of FMR1 mRNA, ubiquitin-positive intranuclear inclusions, white matter disease, iron accumulation, and a proinflammatory state. OBJECTIVE: The objective of this study was to analyze the presence of cerebral microbleeds in the brains of patients with fragile X-associated tremor/ataxia syndrome and investigate plausible causes for cerebral microbleeds in fragile X-associated tremor/ataxia syndrome. METHODS: We collected cerebral and cerebellar tissue from 15 fragile X-associated tremor/ataxia syndrome cases and 15 control cases carrying FMR1 normal alleles. We performed hematoxylin and eosin, Perls and Congo red stains, ubiquitin, and amyloid ß protein immunostaining. We quantified the number of cerebral microbleeds, amount of iron, presence of amyloid ß within the capillaries, and number of endothelial cells containing intranuclear inclusions. We evaluated the relationships between pathological findings using correlation analysis. RESULTS: We found intranuclear inclusions in the endothelial cells of capillaries and an increased number of cerebral microbleeds in the brains of those with fragile X-associated tremor/ataxia syndrome, both of which are indicators of cerebrovascular dysfunction. We also found a suggestive association between the amount of capillaries that contain amyloid ß in the cerebral cortex and the rate of disease progression. CONCLUSION: We propose microangiopathy as a pathologic feature of fragile X-associated tremor/ataxia syndrome. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Fragile X Syndrome , Neurodegenerative Diseases , Ataxia/complications , Ataxia/genetics , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Endothelial Cells , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Humans , Tremor/complications , Tremor/genetics
14.
FASEB J ; 34(12): 16676-16692, 2020 12.
Article in English | MEDLINE | ID: mdl-33131090

ABSTRACT

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. It is currently unknown when, and if, individual premutation carriers will develop FXTAS. Thus, with the aim of identifying biomarkers for early diagnosis, development, and progression of FXTAS, we performed global metabolomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct categories: those who developed symptoms of FXTAS (converters, CON) at subsequent visits and those who did not (non-converters, NCON) and we compared to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern Blot and PCR analysis. Metabolomic profile was obtained by ultra-performance liquid chromatography, accurate mass spectrometer, and an Orbitrap mass analyzer. In this study we found 47 metabolites were significantly dysregulated between HC and the premutation groups (PM). Importantly, we identified 24 metabolites that showed significant changes in expression in the CON as compared to the NCON both at V1 and V2, and 70 metabolites in CON as compared to NCON but only at V2. These findings suggest the potential role of the identified metabolites as biomarkers for early diagnosis and for FXTAS disease progression, respectively. Interestingly, the majority of the identified metabolites were lipids, followed by amino acids. To our knowledge, this the first report of longitudinal metabolic profiling and identification of unique biomarkers of FXTAS. The lipid metabolism and specifically the sub pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered in FXTAS.


Subject(s)
Ataxia/genetics , Ataxia/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Lipid Metabolism/genetics , Tremor/genetics , Tremor/metabolism , Adult , Alleles , Biomarkers/metabolism , Female , Fragile X Mental Retardation Protein/metabolism , Heterozygote , Humans , Longitudinal Studies , Male
15.
Twin Res Hum Genet ; 24(2): 95-102, 2021 04.
Article in English | MEDLINE | ID: mdl-33757613

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) occurs in carriers of fragile X mental retardation 1 (FMR1) X-linked small CGG expansion (gray zone [GZ] and premutation [PM]) alleles, containing 41-200 repeats. Major features comprise kinetic tremor, gait ataxia, cognitive decline and cerebellar peduncular white matter lesions, but atypical/incomplete FXTAS may occur. We explored the possibility of polygenic effects modifying the FXTAS spectrum phenotypes. We used three motor scales and selected cognitive tests in a series of three males and three females from a single sibship carrying PM or GZ alleles (44 to 75 repeats). The molecular profiles from these siblings were determined by genomewide association study with single-nucleotide polymorphism (SNP) genotyping by Illumina Global Screening Array. Nonparametric linkage analysis was applied and Parkinson's disease (PD) polygenic risk scores (PRSs) were calculated for all the siblings, based on 107 known risk variants. All male and female siblings manifested similar kinetic tremor phenotypes. In contrast to FXTAS, they showed negligible gait ataxia, and few white matter lesions on MRI. Cognitive functioning was unaffected. Suggestive evidence of linkage to a broad region of the short arm of chromosome 10 was obtained, and median PD PRS for the sibship fell within the top 30% of a sample of over 500,000 UK and Australian controls. The genomewide study results are suggestive of modifying effects of genetic risk loci linked to PD, on the neurological phenotype of FMR1-CGG small expansion carriers, resulting in an oligosymptomatic kinetic tremor seen in FXTAS spectrum, but also consistent with essential tremor.


Subject(s)
Essential Tremor , Fragile X Mental Retardation Protein , Australia , Female , Fragile X Mental Retardation Protein/genetics , Humans , Male , Phenotype , Siblings
16.
J Appl Res Intellect Disabil ; 34(3): 830-839, 2021 May.
Article in English | MEDLINE | ID: mdl-33538083

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism spectrum disorder (ASD). In Colombia, there are no screening or testing protocols established for the diagnosis of FXS. In this study, we aimed to describe the diagnostic trends of FXS in Colombia. METHODS: Data were included on 1322 individuals obtained based on data from the only 2 databases available. Sociodemographic information and data related to the diagnostic process were obtained and included in this study. RESULTS: The average age at the time of diagnosis for individuals with the full mutation (FM) was of 26.9 ± 2.57 years and was strongly dependent on sex and socioeconomic status. Most individuals with a molecular diagnosis were from the main cities. CONCLUSION: The overall age of diagnosis of FXS is later in life than reports from other countries. Restricted access to molecular testing through the national health system might explain this discrepancy in Colombia.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Intellectual Disability , Alleles , Colombia/epidemiology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics
17.
Am J Med Genet C Semin Med Genet ; 184(4): 1030-1041, 2020 12.
Article in English | MEDLINE | ID: mdl-33274544

ABSTRACT

We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.


Subject(s)
Autism Spectrum Disorder , Physicians , Child , Delivery of Health Care , Humans , Referral and Consultation , West Indies
18.
Hum Mol Genet ; 27(12): 2039-2051, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29590342

ABSTRACT

Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis.


Subject(s)
Autism Spectrum Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Adolescent , Adult , Aged , Animals , Autism Spectrum Disorder/physiopathology , Child , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fragile X Mental Retardation Protein/biosynthesis , Fragile X Syndrome/physiopathology , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , Male , Mice , Mice, Knockout , Middle Aged , Neurons/metabolism , Neurons/pathology , Young Adult
19.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27233938

ABSTRACT

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Subject(s)
Diacylglycerol Kinase/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Neurons/enzymology , Aged , Animals , Dendritic Spines/enzymology , Dendritic Spines/metabolism , Diacylglycerol Kinase/genetics , Diglycerides/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/enzymology , Fragile X Syndrome/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurons/metabolism , Signal Transduction
20.
J Hum Genet ; 63(4): 509-516, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29379191

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and autism. The reported prevalence of the full mutation (FM) gene FMR1 in the general population is 0.2-0.4 per 1000 males and 0.125-0.4 per 1000 females. Population screening for FMR1 expanded alleles has been performed in newborns and in an adult population. However, it has never been carried out in an entire town. Ricaurte is a Colombian district with 1186 habitants, with a high prevalence of FXS, which was first described by cytogenetic techniques in 1999. METHODS: Using a PCR-based approach, screening for FXS was performed on blood spot samples obtained from 926 (502 males and 424 females) inhabitants from Ricaurte, accounting for 78% of total population. RESULTS: A high prevalence of carriers of the expanded allele was observed in all FXS mutation categories. Using the Bayesian methods the carrier frequency of FM was 48.2 (95% Credibility Region CR: 36.3-61.5) per 1000 males and 20.5 (95% CR:13.5-28.6) per 1000 females; the frequency of premutation carrier was 14.1 (95% RC: 8.0-21.7) per 1000 males (95% RC: 8.0-21.7 per 1000 males) and 35.9 (95% RC: 26.5-46.2) per 1000 for females (95% RC: 26.5-46.2 per 1000 females), and gray zone carrier was 13.4 (95% RC: 7.4-20.7) per 1000 males (95% RC: 7.4-20.7 per 1000 males) and 42.2 (95% RC: 32.2-53.8) per 1000 for females (95% RC: 32.2-53.8 per 1000 females). Differences in carrier frequencies were observed for premutation and FM alleles between natives and non-natives. CONCLUSIONS: This study shows that in Ricaurte the carrier frequencies of FMR1 expanded alleles (premutations and FMs) are higher than those reported in the literature, suggesting that Ricaurte constitutes a genetic cluster of FXS.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Gene Frequency , Heterozygote , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Child , Child, Preschool , Colombia/epidemiology , Female , Founder Effect , Genetic Testing , Geography , Humans , Infant , Male , Mass Screening , Middle Aged , Odds Ratio , Population Surveillance , Trinucleotide Repeat Expansion , Trinucleotide Repeats , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL