Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nature ; 604(7904): 111-119, 2022 04.
Article in English | MEDLINE | ID: mdl-35355018

ABSTRACT

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Subject(s)
Cell Lineage , Lung , Stem Cells , Alveolar Epithelial Cells , Animals , Cell Differentiation , Connectome , Fibroblasts , Gene Expression Profiling , Humans , Lung/cytology , Lung Diseases , Mice , Organoids , Primates , Regeneration , Single-Cell Analysis , Stem Cells/cytology
2.
Am J Respir Cell Mol Biol ; 69(3): 255-265, 2023 09.
Article in English | MEDLINE | ID: mdl-37315312

ABSTRACT

Targeted delivery of transgenes to tissue-resident stem cells and related niches offers avenues for interrogating pathways and editing endogenous alleles for therapeutic interventions. Here, we survey multiple adeno-associated virus (AAV) serotypes, administered via intranasal and retroorbital routes in mice, to target lung alveolar stem cell niches. We found that AAV5, AAV4, and AAV8 efficiently and preferentially transduce alveolar type-2 stem cells (AT2s), endothelial cells, and PDGFRA+ fibroblasts, respectively. Notably, some AAVs show different cell tropisms depending on the route of administration. Proof-of-concept experiments reveal the versatility of AAV5-mediated transgenesis for AT2-lineage labeling, clonal cell tracing after cell ablation, and conditional gene inactivation in both postnatal and adult mouse lungs in vivo. AAV6, but not AAV5, efficiently transduces both mouse and human AT2s in alveolar organoid cultures. Furthermore, AAV5 and AAV6 can be used to deliver guide RNAs and transgene cassettes for homologous recombination in vivo and ex vivo, respectively. Using this system coupled with clonal derivation of AT2 organoids, we demonstrate efficient and simultaneous editing of multiple loci, including targeted insertion of a payload cassette in AT2s. Taken together, our studies highlight the powerful utility of AAVs for interrogating alveolar stem cells and other specific cell types both in vivo and ex vivo.


Subject(s)
Dependovirus , Endothelial Cells , Mice , Animals , Humans , Dependovirus/genetics , Transduction, Genetic , Genetic Vectors , Gene Transfer Techniques , Stem Cells
3.
Am J Respir Cell Mol Biol ; 69(6): 623-637, 2023 12.
Article in English | MEDLINE | ID: mdl-37523502

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects (n = 13) and patients with COVID-19 (n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.


Subject(s)
Alveolar Epithelial Cells , COVID-19 , Humans , COVID-19/genetics , COVID-19/metabolism , Lung , Epithelial Cells/metabolism , Sequence Analysis, RNA
4.
EMBO Rep ; 22(7): e51921, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34096150

ABSTRACT

Epithelial tissues respond to a wide variety of environmental and genotoxic stresses. As an adaptive mechanism, cells can deviate from their natural paths to acquire new identities, both within and across lineages. Under extreme conditions, epithelial tissues can utilize "shape-shifting" mechanisms whereby they alter their form and function at a tissue-wide scale. Mounting evidence suggests that in order to acquire these alternate tissue identities, cells follow a core set of "tissue logic" principles based on developmental paradigms. Here, we review the terminology and the concepts that have been put forward to describe cell plasticity. We also provide insights into various cell intrinsic and extrinsic factors, including genetic mutations, inflammation, microbiota, and therapeutic agents that contribute to cell plasticity. Additionally, we discuss recent studies that have sought to decode the "syntax" of plasticity-i.e., the cellular and molecular principles through which cells acquire new identities in both homeostatic and malignant epithelial tissues-and how these processes can be manipulated for developing novel cancer therapeutics.


Subject(s)
Cell Plasticity , Neoplasms , Epithelial Cells , Homeostasis , Humans , Inflammation , Neoplasms/genetics
5.
Development ; 141(10): 2064-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24764076

ABSTRACT

Proper development of nephrons is essential for kidney function. ß-Catenin-independent Wnt signaling through Fzd8, Inversin, Daam1, RhoA and Myosin is required for nephric tubule morphogenesis. Here, we provide a novel mechanism through which non-canonical Wnt signaling contributes to tubular development. Using Xenopus laevis as a model system, we found that the cell-adhesion molecule Alcam is required for proper nephrogenesis and functions downstream of Fzd3 during embryonic kidney development. We found alcam expression to be independent of Fzd8 or Inversin, but to be transcriptionally regulated by the ß-Catenin-independent Wnt/JNK pathway involving ATF2 and Pax2 in a direct manner. These novel findings indicate that several branches of Wnt signaling are independently required for proximal tubule development. Moreover, our data indicate that regulation of morphogenesis by non-canonical Wnt ligands also involves direct transcriptional responses in addition to the effects on a post-translational level.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/physiology , Embryonic Development/genetics , Kidney/embryology , MAP Kinase Signaling System/genetics , Wnt Signaling Pathway/genetics , Activated-Leukocyte Cell Adhesion Molecule/genetics , Animals , Embryo, Nonmammalian , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Gene Expression Regulation, Developmental , Kidney/metabolism , PAX2 Transcription Factor/physiology , Pronephros/embryology , Pronephros/metabolism , Response Elements/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/genetics
6.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38585928

ABSTRACT

Proteins undergo reversible S -acylation via a thioester linkage in vivo. S -palmitoylation, modification by C16:0 fatty acid, is a common S -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised Acyl-Trap, a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S -acyl enrichment. We show that the method is compatible with protein-level detection of S -acylated proteins (e.g. H-Ras) as well as S -acyl site identification and quantification using on-trap isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S -acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

7.
Dev Cell ; 59(7): 830-840.e4, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38377991

ABSTRACT

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.


Subject(s)
Alveolar Epithelial Cells , Lung , Mice , Animals , Lung/physiology , Alveolar Epithelial Cells/metabolism , Stem Cells/metabolism , Cell Movement , Cell Differentiation/physiology
8.
Exp Cell Res ; 318(10): 1134-45, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22465478

ABSTRACT

Wnt4, a member of the Wnt superfamily of signaling molecules, is critical for mammalian kidney development, since nephrogenesis fails in its absence, while Wnt4 signaling induces mesenchyme-to-epithelium transition and associated tubulogenesis in the uninduced mesenchymal cells in the classic transfilter model. The factors that promote Wnt4 gene expression during kidney development are largely unknown, however. We addressed the upstream regulators of the Wnt4 gene and describe here the transcription factors WT1 and Sox11 as candidate molecules in the control of gene expression. We found that WT1/Sox11 regulate Wnt4 promoter expression in a synergistic fashion in an embryonic kidney mesenchyme-derived cell line model. The transcription complex containing WT1/Sox11 was immunoprecipitated from embryonic kidney cells with Sox11 antibodies, suggesting their presence in the same complex. Dominant negative forms of WT1, namely P129L and F154S mutants, inhibited Wnt4 expression, but this inhibition was not influenced by the presence of wild-type Sox11. The mutant WT1 forms were similarly incapable of interacting with Sox11, as judged by reporter studies. The spatio-temporal expression pattern of wt1 and sox11 overlaps with that of Wnt4 in the early Xenopus pronephros. Morpholino-mediated knockdown of either wt1 or sox11 inhibited Wnt4 expression in the prospective pronephros of the Xenopus embryos. We propose that Sox11 represents a synergistic factor for WT1 in regulating the Wnt4 gene expression that is critical for nephrogenesis during kidney ontogeny.


Subject(s)
Promoter Regions, Genetic , SOXC Transcription Factors/physiology , WT1 Proteins/physiology , Wnt4 Protein/genetics , Animals , Base Sequence , Cells, Cultured , Gene Expression , Gene Expression Regulation, Developmental , Genes, Reporter , Kidney/cytology , Kidney/growth & development , Luciferases/biosynthesis , Luciferases/genetics , Mice , Pronephros/embryology , Pronephros/metabolism , Protein Binding , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Wnt Signaling Pathway , Wnt4 Protein/metabolism , Xenopus laevis/embryology
9.
Cell Stem Cell ; 30(11): 1486-1502.e9, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37922879

ABSTRACT

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Lung , Epithelial Cells , Stem Cells , Cell Communication
10.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Article in English | MEDLINE | ID: mdl-37749254

ABSTRACT

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Cricetinae , Humans , Animals , Mice , Host Specificity , Pangolins , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Mice, Inbred BALB C
11.
STAR Protoc ; 3(2): 101447, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35712012

ABSTRACT

Alveolar type 2 cells (AT2s) serve as stem cells of the alveoli and restore cell numbers after injury. Here, we describe a detailed protocol for the isolation, purification, and culture of murine and human AT2s. We have developed chemically defined and stroma-free culture conditions that enable expansion and maintenance of AT2s. The culture conditions are scalable and compatible with high-throughput chemical and genetic screenings and can potentially be used to generate large AT2 numbers for cell-based therapies. For complete details on the use and execution of this protocol, please refer to Katsura et al. (2020).


Subject(s)
Alveolar Epithelial Cells , Pulmonary Alveoli , Animals , Cell Differentiation/genetics , Humans , Lung , Mice , Stem Cells
12.
Article in English | MEDLINE | ID: mdl-34750172

ABSTRACT

Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.


Subject(s)
Irritants , Lung , Animals , Epithelial Cells , Epithelium , Homeostasis , Humans , Mammals
13.
Transl Res ; 250: 36-45, 2022 12.
Article in English | MEDLINE | ID: mdl-35850445

ABSTRACT

Human respiratory viruses induce a wide breadth of disease phenotypes and outcomes of varying severity. Innovative models that recapitulate the human respiratory tract are needed to study such viruses, understand the virus-host interactions underlying replication and pathogenesis, and to develop effective countermeasures for prevention and treatment. Human organoid models provide a platform to study virus-host interactions in the proximal to distal lung in the absence of a human in vivo model. These cultures fill the niche of a suitable ex vivo model that represents the in vivo lung environment and encapsulates the structure and function of the native human lung.


Subject(s)
Organoids , Viruses , Humans , Organoids/pathology , Lung/pathology , Virus Replication
14.
Front Bioeng Biotechnol ; 10: 848699, 2022.
Article in English | MEDLINE | ID: mdl-35252157

ABSTRACT

The gas exchange units of the lung, the alveoli, are mechanically active and undergo cyclic deformation during breathing. The epithelial cells that line the alveoli contribute to lung function by reducing surface tension via surfactant secretion, which is highly influenced by the breathing-associated mechanical cues. These spatially heterogeneous mechanical cues have been linked to several physiological and pathophysiological states. Here, we describe the development of a microfluidically assisted lung cell culture model that incorporates heterogeneous cyclic stretching to mimic alveolar respiratory motions. Employing this device, we have examined the effects of respiratory biomechanics (associated with breathing-like movements) and strain heterogeneity on alveolar epithelial cell functions. Furthermore, we have assessed the potential application of this platform to model altered matrix compliance associated with lung pathogenesis and ventilator-induced lung injury. Lung microphysiological platforms incorporating human cells and dynamic biomechanics could serve as an important tool to delineate the role of alveolar micromechanics in physiological and pathological outcomes in the lung.

15.
Cell Rep ; 41(6): 111610, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351395

ABSTRACT

In both humans and mice, repair of acute kidney injury is worse in males than in females. Here, we provide evidence that this sexual dimorphism results from sex differences in ferroptosis, an iron-dependent, lipid-peroxidation-driven regulated cell death. Using genetic and single-cell transcriptomic approaches in mice, we report that female sex confers striking protection against ferroptosis, which was experimentally induced in proximal tubular (PT) cells by deleting glutathione peroxidase 4 (Gpx4). Single-cell transcriptomic analyses further identify the NFE2-related factor 2 (NRF2) antioxidant protective pathway as a female resilience mechanism against ferroptosis. Genetic inhibition and pharmacological activation studies show that NRF2 controls PT cell fate and plasticity by regulating ferroptosis. Importantly, pharmacological NRF2 activation protects male PT cells from ferroptosis and improves cellular plasticity as in females. Our data highlight NRF2 as a potential therapeutic target to prevent failed renal repair after acute kidney injury in both sexes by modulating cellular plasticity.


Subject(s)
Acute Kidney Injury , Ferroptosis , Humans , Female , Male , Mice , Animals , Sex Characteristics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kidney/metabolism
16.
iScience ; 25(10): 105114, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185377

ABSTRACT

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.

17.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282911

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
18.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279220

ABSTRACT

Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.


Subject(s)
Epithelial Cells/metabolism , Kidney/injuries , Kidney/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/therapy , Animals , Cell Death , Ferroptosis/genetics , Fibrosis/genetics , Gene Expression , Inflammation/genetics , Iron/metabolism , Kidney/pathology , Lipid Peroxidation , Male , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Regenerative Medicine
19.
Nat Cell Biol ; 22(8): 934-946, 2020 08.
Article in English | MEDLINE | ID: mdl-32661339

ABSTRACT

Stem cells undergo dynamic changes in response to injury to regenerate lost cells. However, the identity of transitional states and the mechanisms that drive their trajectories remain understudied. Using lung organoids, multiple in vivo repair models, single-cell transcriptomics and lineage tracing, we find that alveolar type-2 epithelial cells undergoing differentiation into type-1 cells acquire pre-alveolar type-1 transitional cell state (PATS) en route to terminal maturation. Transitional cells undergo extensive stretching during differentiation, making them vulnerable to DNA damage. Cells in the PATS show an enrichment of TP53, TGFß, DNA-damage-response signalling and cellular senescence. Gain and loss of function as well as genomic binding assays revealed a direct transcriptional control of PATS by TP53 signalling. Notably, accumulation of PATS-like cells in human fibrotic lungs was observed, suggesting persistence of the transitional state in fibrosis. Our study thus implicates a transient state associated with senescence in normal epithelial tissue repair and its abnormal persistence in disease conditions.


Subject(s)
Alveolar Epithelial Cells , Cell Differentiation , Pulmonary Fibrosis/pathology , Adult Stem Cells/pathology , Alveolar Epithelial Cells/pathology , Animals , Cell Lineage , Cell Shape , Cellular Senescence , DNA Damage , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Organoids , Pulmonary Fibrosis/genetics , Signal Transduction , Tumor Suppressor Protein p53/metabolism
20.
Cell Stem Cell ; 27(6): 890-904.e8, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33128895

ABSTRACT

Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases.


Subject(s)
Adult Stem Cells/virology , Alveolar Epithelial Cells/drug effects , COVID-19 Drug Treatment , Interferons/pharmacology , SARS-CoV-2/immunology , Adult , Adult Stem Cells/drug effects , Adult Stem Cells/enzymology , Aged , Aged, 80 and over , Alveolar Epithelial Cells/enzymology , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/physiopathology , Cell Culture Techniques , Cell Differentiation , Female , Humans , Inflammation , Male , Mice , Receptors, Coronavirus/metabolism , Transcriptome , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL