Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Nature ; 505(7482): 174-9, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24402279

ABSTRACT

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.


Subject(s)
Evolution, Molecular , Genome/genetics , Sharks/genetics , Animals , Calcium/metabolism , Cell Lineage/immunology , Fish Proteins/classification , Fish Proteins/genetics , Gene Deletion , Genomics , Immunity, Cellular/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Osteogenesis/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phylogeny , Protein Structure, Tertiary/genetics , Sharks/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Time Factors , Vertebrates/classification , Vertebrates/genetics , Zebrafish/genetics , Zebrafish/growth & development
3.
PLoS Genet ; 9(1): e1003177, 2013.
Article in English | MEDLINE | ID: mdl-23359656

ABSTRACT

Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses.


Subject(s)
Eye Proteins/genetics , Gene Duplication , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Sharks/genetics , Zebrafish , Animals , Evolution, Molecular , Eye Proteins/metabolism , Gene Expression Regulation , Genetic Variation , Genome , Homeodomain Proteins/metabolism , Mice , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Retina/metabolism , Sequence Analysis, DNA , Vertebrates/genetics , Vertebrates/growth & development , Zebrafish/genetics , Zebrafish/growth & development
4.
Proc Natl Acad Sci U S A ; 110(40): 16044-9, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043829

ABSTRACT

Cyclostomes, comprising jawless vertebrates such as lampreys and hagfishes, are the sister group of living jawed vertebrates (gnathostomes) and hence an important group for understanding the origin and diversity of vertebrates. In vertebrates and other metazoans, Hox genes determine cell fate along the anteroposterior axis of embryos and are implicated in driving morphological diversity. Invertebrates contain a single Hox cluster (either intact or fragmented), whereas elephant shark, coelacanth, and tetrapods contain four Hox clusters owing to two rounds of whole-genome duplication ("1R" and "2R") during early vertebrate evolution. By contrast, most teleost fishes contain up to eight Hox clusters because of an additional "teleost-specific" genome duplication event. By sequencing bacterial artificial chromosome (BAC) clones and the whole genome, here we provide evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). This suggests that the lamprey lineage has experienced an additional genome duplication after 1R and 2R. The relative age of lamprey and human paralogs supports this hypothesis. Compared with gnathostome Hox clusters, lamprey Hox clusters are unusually large. Several conserved noncoding elements (CNEs) were predicted in the Hox clusters of lamprey, elephant shark, and human. Transgenic zebrafish assay indicated the potential of CNEs to function as enhancers. Interestingly, CNEs in individual lamprey Hox clusters are frequently conserved in multiple Hox clusters in elephant shark and human, implying a many-to-many orthology relationship between lamprey and gnathostome Hox clusters. Such a relationship suggests that the first two rounds of genome duplication may have occurred independently in the lamprey and gnathostome lineages.


Subject(s)
Evolution, Molecular , Genes, Homeobox/genetics , Lampreys/genetics , Multigene Family/genetics , Animals , Base Sequence , Chromosomes, Artificial, Bacterial/genetics , Conserved Sequence/genetics , Japan , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Regulatory Sequences, Nucleic Acid/genetics , Sequence Alignment , Sequence Analysis, DNA
5.
Proc Natl Acad Sci U S A ; 106(38): 16327-32, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19805301

ABSTRACT

We have sequenced and analyzed Hox gene clusters from elephant shark, a holocephalian cartilaginous fish. Elephant shark possesses 4 Hox clusters with 45 Hox genes that include orthologs for a higher number of ancient gnathostome Hox genes than the 4 clusters in tetrapods and the supernumerary clusters in teleost fishes. Phylogenetic analysis of elephant shark Hox genes from 7 paralogous groups that contain all of the 4 members indicated an ((AB)(CD)) topology for the order of Hox cluster duplication, providing support for the 2R hypothesis (i.e., 2 rounds of whole-genome duplication during the early evolution of vertebrates). Comparisons of noncoding sequences of the elephant shark and human Hox clusters have identified a large number of conserved noncoding elements (CNEs), which represent putative cis-regulatory elements that may be involved in the regulation of Hox genes. Interestingly, in fugu more than 50% of these ancient CNEs have diverged beyond recognition in the duplicated (HoxA, HoxB, and HoxD) as well as the singleton (HoxC) Hox clusters. Furthermore, the b-paralogs of the duplicated fugu Hox clusters are virtually devoid of unique ancient CNEs. In contrast to fugu Hox clusters, elephant shark and human Hox clusters have lost fewer ancient CNEs. If these ancient CNEs are indeed enhancers directing tissue-specific expression of Hox genes, divergence of their sequences in vertebrate lineages might have led to altered expression patterns and presumably the functions of their associated Hox genes.


Subject(s)
Evolution, Molecular , Genes, Homeobox/genetics , Multigene Family , Sharks/genetics , Animals , Gene Order , Genetic Variation , Homeodomain Proteins/classification , Homeodomain Proteins/genetics , Humans , Models, Genetic , Phylogeny , Vertebrates/classification , Vertebrates/genetics
6.
PLoS Biol ; 5(4): e101, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17407382

ABSTRACT

Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.


Subject(s)
Genome , Sharks/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA , Humans , Molecular Sequence Data , Phylogeny , Repetitive Sequences, Nucleic Acid
7.
Front Immunol ; 10: 1566, 2019.
Article in English | MEDLINE | ID: mdl-31379813

ABSTRACT

The inflammasome is a multi-protein complex that mediates proteolytic cleavage and release of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis-a form of cell death induced by various pathogenic bacteria. Apoptosis-associated speck-like protein containing a CARD (ASC) has a pivotal role in inflammasome assembly and activation. While ASC function has been primarily implicated in innate immune cells, its contribution to lymphocyte biology is unclear. Here we report that ASC is constitutively expressed in naïve CD4+ T cells together with the inflammasome sensor NLRP3 and caspase-1. When adoptively transferred in immunocompromised Rag1-/- mice, Asc-/- CD4+ T cells exacerbate T-cell-mediated autoimmune colitis. Asc-/- CD4+ T cells exhibit a higher proliferative capacity in vitro than wild-type CD4+ T cells. The increased expansion of Asc-/- CD4+ T cells in vivo correlated with robust TCR-mediated activation, inflammatory activity, and higher metabolic profile toward a highly glycolytic phenotype. These findings identify ASC as a crucial intrinsic regulator of CD4+ T-cell expansion that serves to maintain intestinal homeostasis.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Homeostasis/immunology , Intestines/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Caspase 1/genetics , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Homeostasis/genetics , Inflammasomes/genetics , Inflammasomes/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
8.
FEBS Lett ; 579(20): 4470-8, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16081070

ABSTRACT

STAT4 is a transcription factor activated in response to IL-12, and is involved in Th1 cell development. The molecular mechanisms controlling the transcription of the STAT4 gene are however, unclear. Sequence comparison of the 5' flanking regions of human, mouse and pufferfish (Fugu rubripes) Stat4 genes revealed a high frequency of Ikaros (Ik) binding elements in all three species. We then investigated the role of Ik binding elements in the human STAT4 promoter using Jurkat T cells. Transactivation, electrophoretic mobility shift assay and RNA interference-mediated gene knockdown experiments revealed that Ik is involved in the regulation of STAT4 in human T cells.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics , Animals , Base Sequence , Binding Sites , Genome , Hematopoiesis/genetics , Humans , Ikaros Transcription Factor , Jurkat Cells , Mice , Molecular Sequence Data , Promoter Regions, Genetic , RNA Interference , STAT4 Transcription Factor , Takifugu/genetics , Transcription, Genetic , Zinc Fingers
10.
PLoS One ; 7(10): e47174, 2012.
Article in English | MEDLINE | ID: mdl-23056606

ABSTRACT

Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the 'oligo-capping' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5'-ESTs and 41,317 3'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for whole genome sequencing.


Subject(s)
DNA, Complementary/genetics , Expressed Sequence Tags/metabolism , Animals , Fishes/classification , Fishes/genetics
11.
Genome Biol Evol ; 3: 424-42, 2011.
Article in English | MEDLINE | ID: mdl-21551351

ABSTRACT

The compact genome of fugu (Takifugu rubripes) has been used widely as a reference genome for understanding the evolution of vertebrate genomes. However, the fragmented nature of the fugu genome assembly has restricted its use for comparisons of genome architecture in vertebrates. To extend the contiguity of the assembly to the chromosomal level, we have generated a comprehensive genetic map of fugu and anchored the scaffolds of the assembly to the 22 chromosomes of fugu. The map consists of 1,220 microsatellite markers that provide anchor points to 697 scaffolds covering 86% of the genome assembly (http://www.fugu-sg.org/). The integrated genome map revealed a higher recombination rate in fugu compared with other vertebrates and a wide variation in the recombination rate between sexes and across chromosomes of fugu. We used the extended assembly to explore recent rearrangement events in the lineages of fugu, Tetraodon, and medaka and compared them with rearrangements in three mammalian (human, mouse, and opossum) lineages. Between the two pufferfishes, fugu has experienced fewer chromosomal rearrangements than Tetraodon. The gene order is more highly conserved in the three teleosts than in mammals largely due to a lower rate of interchromosomal rearrangements in the teleosts. These results provide new insights into the distinct patterns of genome evolution between teleosts and mammals. The consolidated genome map and the genetic map of fugu are valuable resources for comparative genomics of vertebrates and for elucidating the genetic basis of the phenotypic diversity of ~25 species of Takifugu that evolved within the last 5 My.


Subject(s)
Chromosome Mapping , Evolution, Molecular , Genome , Mammals/genetics , Takifugu/genetics , Animals , Chromosomes , Conserved Sequence/genetics , Gene Order , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence , Mice , Microsatellite Repeats , Opossums/genetics , Oryzias/genetics , Phylogeny , Sequence Analysis, DNA , Tetraodontiformes/genetics
12.
Cancer Res ; 67(23): 11368-76, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18056464

ABSTRACT

Protein tyrosine kinases (PTKs) play a critical role in the manifestation of cancer cell properties, and respective signaling mechanisms have been studied extensively on immortalized tumor cells. To characterize and analyze commonly used cancer cell lines with regard to variations in the primary structure of all expressed PTKs, we conducted a cDNA-based sequence analysis of the entire tyrosine kinase transcriptome of 254 established tumor cell lines. The profiles of cell line intrinsic PTK transcript alterations and the evaluation of 155 identified polymorphisms and 234 somatic mutations are made available in a database designated "Tykiva" (tyrosine kinome variant). Tissue distribution analysis and/or the localization within defined protein domains indicate functional relevance of several genetic alterations. The cysteine replacement of the highly conserved Y367 residue in fibroblast growth factor receptor 4 or the Q26X nonsense mutation in the tumor-suppressor kinase CSK are examples, and may contribute to cell line-specific signaling characteristics and tumor progression. Moreover, known variants, such as epidermal growth factor receptor G719S, that were shown to mediate anticancer drug sensitivity could be detected in other than the previously reported tumor types. Our data therefore provide extensive system information for the design and interpretation of cell line-based cancer research, and may stimulate further investigations into broader clinical applications of current cancer therapeutics.


Subject(s)
Gene Expression Profiling , Mutation/genetics , Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Cell Line , Cells, Cultured , DNA, Complementary/analysis , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 103(18): 6994-9, 2006 May 02.
Article in English | MEDLINE | ID: mdl-16636282

ABSTRACT

Hox genes in vertebrates are clustered, and the organization of the clusters has been highly conserved during evolution. The conservation of Hox clusters has been attributed to enhancers located within and outside the Hox clusters that are essential for the coordinated "temporal" and "spatial" expression patterns of Hox genes in developing embryos. To identify evolutionarily conserved regulatory elements within and outside the Hox clusters, we obtained contiguous sequences for the conserved syntenic blocks from the seven Hox loci in fugu and carried out a systematic search for conserved noncoding sequences (CNS) in the human, mouse, and fugu Hox loci. Our analysis has uncovered unusually large conserved syntenic blocks at the HoxA and HoxD loci. The conserved syntenic blocks at the human and mouse HoxA and HoxD loci span 5.4 Mb and 4 Mb and contain 21 and 19 genes, respectively. The corresponding regions in fugu are 16- and 12-fold smaller. A large number of CNS was identified within the Hox clusters and outside the Hox clusters spread over large regions. The CNS include previously characterized enhancers and overlap with the 5' global control regions of HoxA and HoxD clusters. Most of the CNS are likely to be control regions involved in the regulation of Hox and other genes in these loci. We propose that the regulatory elements spread across large regions on either side of Hox clusters are a major evolutionary constraint that has maintained the exceptionally long syntenic blocks at the HoxA and HoxD loci.


Subject(s)
Genes, Homeobox , Homeodomain Proteins/genetics , Multigene Family , Regulatory Sequences, Nucleic Acid , Synteny , Animals , Binding Sites , Biological Evolution , Chromosomes, Human , Gene Expression Regulation, Developmental , Humans , Mice , Molecular Sequence Data , Transcription Factors/metabolism
14.
Science ; 314(5807): 1892, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17185593

ABSTRACT

Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.


Subject(s)
Conserved Sequence , Genome, Human , Regulatory Sequences, Nucleic Acid , Sharks/genetics , Animals , Base Sequence , DNA, Intergenic , Enhancer Elements, Genetic , Evolution, Molecular , Genome , Humans , Molecular Sequence Data , Takifugu/genetics , Zebrafish/genetics
15.
Immunogenetics ; 54(10): 705-13, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12557057

ABSTRACT

Mx proteins are members of a family of interferon-inducible genes that are expressed by cells in response to viral infection. They are important determinants of innate immunity against viral infection in vertebrates. We cloned the pufferfish ( Takifugu rubripes) Mx gene and sequenced 80 kb from the Mx locus. The Fugu Mx gene spans 3.4 kb from the transcription start site to the polyadenylation signal, and is made up of 12 exons and 11 introns. The protein sequence encoded by the Fugu Mx gene is 77%, 48%, and 51% identical to that of trout Mx1, chicken Mx, and mouse Mx1 genes, respectively. The Fugu Mx gene is expressed in a variety of tissues, with high expression detected in the heart, gill, kidney, intestine, and brain. Analysis of the 5'-flanking sequence of the gene showed the presence of two interferon-stimulated response elements (ISRE) at positions -51 to 38 and -97 to 85, relative to the transcription start site. The Fugu Mx promoter was inducible by human IFN-beta in the human hepatoma (Huh7) cells and by polyinosinic: polycytidilic acid in the top minnow hepatoma (PLHC-1) cells. Deletion analysis of the promoter showed that both ISREs contributed to inducibility. These results demonstrate that the molecular mechanisms involved in Mx gene regulation are conserved between fish and mammals.


Subject(s)
GTP-Binding Proteins/genetics , Promoter Regions, Genetic/physiology , Tetraodontiformes/genetics , Amino Acid Sequence , Animals , Base Sequence , Blotting, Southern , Chromosome Mapping , Cloning, Molecular , GTP-Binding Proteins/chemistry , Genetic Structures , Guanosine Triphosphate/metabolism , Molecular Sequence Data , Myxovirus Resistance Proteins
16.
Proc Natl Acad Sci U S A ; 99(5): 2936-41, 2002 Mar 05.
Article in English | MEDLINE | ID: mdl-11867707

ABSTRACT

The lck gene encodes a lymphocyte-specific protein-tyrosine kinase that is implicated in T cell maturation and signaling. In mammals, the transcription of the lck gene is regulated by two independent promoters, the proximal promoter, which is active in thymocytes, and the distal promoter, which dominates in mature T cells. In the human and mouse lck gene loci, the two promoter elements are separated by at least 40 kb and 10 kb, respectively. In this study, we have cloned and sequenced 60 kb from the pufferfish (Fugu rubripes) lck locus. The promoter region of the Fugu lck spans only 4.2 kb and contains a proximal and a distal promoter in the 2.3-kb region adjacent to the coding sequence. By generating transgenic mice, we have demonstrated that the compact promoter of the Fugu lck contains regulatory elements that direct expression to lymphoid organs of mice. We were able to localize the regulatory elements to a short region of 830 bp without losing specificity to cultured human T cell line. These results show that the basic mechanisms that mediate lymphocyte-specific expression are conserved between teleosts and mammals. The short promoter of the Fugu lck isolated by us offers a powerful tool for labeling T cells, targeting expression, and manipulating T cell activity in fishes as well as in mammals.


Subject(s)
Conserved Sequence , Gene Expression Regulation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Promoter Regions, Genetic , Amino Acid Sequence , Animals , Cell Line, Transformed , Cosmids , Gene Expression Profiling , Genes, Reporter , Green Fluorescent Proteins , Humans , Luminescent Proteins/genetics , Mammals , Mice , Mice, Transgenic , Molecular Sequence Data , Sequence Homology, Amino Acid , Takifugu
17.
Genomics ; 80(1): 45-53, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12079282

ABSTRACT

Fierce (frc) mice are deleted for nuclear receptor 2e1 (Nr2e1), and exhibit cerebral hypoplasia, blindness, and extreme aggression. To characterize the Nr2e1 locus, which may also contain the mouse kidney disease (kd) allele, we compared sequence from human, mouse, and the puffer fish Fugu rubripes. We identified a novel gene, c222389, containing conserved elements in noncoding regions. We also discovered a novel vertebrate gene conserved across its length in prokaryotes and invertebrates. Based on a dramatic upregulation in lactating breast, we named this gene lactation elevated-1 (LACE1). Two separate 100-bp elements within the first NR2E1 intron were virtually identical between the three species, despite an estimated 450 million years of divergent evolution. These elements represent strong candidates for functional NR2E1 regulatory elements in vertebrates. A high degree of conservation across NR2E1 combined with a lack of interspersed repeats suggests that an array of regulatory elements embedded within the gene is required for proper gene expression.


Subject(s)
Kidney Diseases/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Regulatory Sequences, Nucleic Acid , Alternative Splicing , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Humans , Interspersed Repetitive Sequences , Mice/genetics , Molecular Sequence Data , Orphan Nuclear Receptors , RNA, Untranslated , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology , Synteny , Takifugu/genetics
18.
Science ; 297(5585): 1301-10, 2002 Aug 23.
Article in English | MEDLINE | ID: mdl-12142439

ABSTRACT

The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some "giant" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.


Subject(s)
Genome, Human , Genome , Sequence Analysis, DNA , Takifugu/genetics , Animals , Biological Evolution , Computational Biology , Conserved Sequence , DNA Transposable Elements , Evolution, Molecular , Exons , Fish Proteins/chemistry , Fish Proteins/genetics , Gene Duplication , Gene Order , Genomics , Humans , Introns , Physical Chromosome Mapping , Proteins/chemistry , Proteins/genetics , Proteome , Repetitive Sequences, Nucleic Acid , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL