Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Mol Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955179

ABSTRACT

The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcussp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.

2.
Mol Cell ; 83(5): 746-758.e5, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805026

ABSTRACT

Type I CRISPR-Cas systems employ multi-subunit Cascade effector complexes to target foreign nucleic acids for destruction. Here, we present structures of D. vulgaris type I-C Cascade at various stages of double-stranded (ds)DNA target capture, revealing mechanisms that underpin PAM recognition and Cascade allosteric activation. We uncover an interesting mechanism of non-target strand (NTS) DNA stabilization via stacking interactions with the "belly" subunits, securing the NTS in place. This "molecular seatbelt" mechanism facilitates efficient R-loop formation and prevents dsDNA reannealing. Additionally, we provide structural insights into how two anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking PAM scanning. These observations form a structural basis for directional R-loop formation and reveal how different Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity.


Subject(s)
CRISPR-Associated Proteins , R-Loop Structures , Protein Conformation , Models, Molecular , DNA/genetics , CRISPR-Cas Systems , CRISPR-Associated Proteins/genetics
3.
Cell ; 163(2): 432-44, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451487

ABSTRACT

Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Escherichia coli/metabolism , Mass Spectrometry , Microscopy, Electron , Models, Molecular , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
Nature ; 630(8018): 961-967, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740055

ABSTRACT

Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Plasmids , Vibrio cholerae , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Argonaute Proteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Deoxyribonucleases/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Models, Molecular , Plasmids/genetics , Plasmids/immunology , Plasmids/metabolism , Protein Domains , Protein Multimerization , Vibrio cholerae/genetics , Vibrio cholerae/immunology , Vibrio cholerae/pathogenicity
5.
Nature ; 613(7944): 582-587, 2023 01.
Article in English | MEDLINE | ID: mdl-36599980

ABSTRACT

Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , RNA , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/metabolism , DNA/chemistry , DNA/immunology , DNA/metabolism , RNA/chemistry , RNA/metabolism , Enzyme Activation , Catalytic Domain , Substrate Specificity
6.
Mol Cell ; 81(7): 1548-1552.e4, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631104

ABSTRACT

Remdesivir is a nucleoside analog approved by the US FDA for treatment of COVID-19. Here, we present a 3.9-Å-resolution cryo-EM reconstruction of a remdesivir-stalled RNA-dependent RNA polymerase complex, revealing full incorporation of 3 copies of remdesivir monophosphate (RMP) and a partially incorporated fourth RMP in the active site. The structure reveals that RMP blocks RNA translocation after incorporation of 3 bases following RMP, resulting in delayed chain termination, which can guide the rational design of improved antiviral drugs.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/physiology , Virus Replication , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/therapeutic use , Alanine/chemistry , Alanine/therapeutic use , Antiviral Agents/therapeutic use , Catalytic Domain , Humans , Viral Proteins
7.
Cell ; 153(1): 166-77, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540697

ABSTRACT

Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.


Subject(s)
Deinococcus/chemistry , Exosome Multienzyme Ribonuclease Complex/chemistry , RNA Stability , RNA, Bacterial/chemistry , RNA, Untranslated/metabolism , Ribonucleoproteins/metabolism , Salmonella typhimurium/metabolism , Animals , Base Sequence , Deinococcus/genetics , Deinococcus/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Molecular Sequence Data , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/ultrastructure , RNA, Bacterial/ultrastructure , RNA, Untranslated/ultrastructure , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Xenopus laevis/metabolism
8.
Nature ; 603(7900): 343-347, 2022 03.
Article in English | MEDLINE | ID: mdl-35236982

ABSTRACT

CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.


Subject(s)
CRISPR-Cas Systems , DNA Mismatch Repair , Gene Editing , RNA, Guide, Kinetoplastida , CRISPR-Associated Protein 9/genetics , Cryoelectron Microscopy , DNA/chemistry , DNA/genetics , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida/genetics
9.
Mol Cell ; 80(6): 971-979.e7, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33248026

ABSTRACT

CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.


Subject(s)
Adaptive Immunity/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Evolution, Molecular , CRISPR-Associated Proteins/immunology , Prokaryotic Cells/immunology , Prokaryotic Cells/virology , Protein Biosynthesis , Viruses/immunology
10.
Mol Cell ; 70(1): 48-59.e5, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29602742

ABSTRACT

CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial/genetics , Escherichia coli/genetics , Gene Editing/methods , CRISPR-Associated Protein 9/immunology , CRISPR-Associated Protein 9/isolation & purification , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Proteins/immunology , CRISPR-Associated Proteins/metabolism , DNA, Bacterial/immunology , DNA, Bacterial/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Multienzyme Complexes , Nucleic Acid Conformation , Protein Conformation , Protein Subunits , Substrate Specificity
11.
Biophys J ; 123(11): 1494-1507, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38462838

ABSTRACT

Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.


Subject(s)
Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Humans , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/metabolism , Phase Transition , Hydrophobic and Hydrophilic Interactions , Protein Domains , Phase Separation
12.
Mol Cell ; 63(5): 840-51, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27588603

ABSTRACT

Bacteria employ surveillance complexes guided by CRISPR (clustered, regularly interspaced, short palindromic repeats) RNAs (crRNAs) to target foreign nucleic acids for destruction. Although most type I and type III CRISPR systems require four or more distinct proteins to form multi-subunit surveillance complexes, the type I-C systems use just three proteins to achieve crRNA maturation and double-stranded DNA target recognition. We show that each protein plays multiple functional and structural roles: Cas5c cleaves pre-crRNAs and recruits Cas7 to position the RNA guide for DNA binding and unwinding by Cas8c. Cryoelectron microscopy reconstructions of free and DNA-bound forms of the Cascade/I-C surveillance complex reveal conformational changes that enable R-loop formation with distinct positioning of each DNA strand. This streamlined type I-C system explains how CRISPR pathways can evolve compact structures that retain full functionality as RNA-guided DNA capture platforms.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , DNA/genetics , Desulfovibrio vulgaris/genetics , Endonucleases/genetics , RNA, Bacterial/genetics , RNA, Guide, Kinetoplastida/genetics , Amino Acid Motifs , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , Desulfovibrio vulgaris/metabolism , Endonucleases/chemistry , Endonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Editing , Gene Expression , Kinetics , Models, Molecular , Nucleic Acid Conformation , Operon , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
14.
Mol Cell ; 56(4): 518-30, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25457165

ABSTRACT

CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , RNA Cleavage , Thermus thermophilus/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Base Sequence , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/ultrastructure , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Endoribonucleases/ultrastructure , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Thermus thermophilus/enzymology
15.
Proteins ; 89(3): 348-360, 2021 03.
Article in English | MEDLINE | ID: mdl-33140424

ABSTRACT

Protein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a reduced representation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and evolutionary rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 185 overall known protein complexes, we observe predictions comparable to other structure-based tools at correctly identifying protein interaction surfaces. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å Cα-RMSD. Thus, a shape reduction of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.


Subject(s)
Computational Biology/methods , Molecular Docking Simulation/methods , Proteins , Protein Binding , Protein Conformation , Protein Interaction Mapping , Proteins/chemistry , Proteins/metabolism
16.
Mol Cell ; 52(1): 135-145, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24119403

ABSTRACT

The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex copurifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5' ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a "sea worm" and is composed of a Cmr2-3 heterodimer "tail," a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled "head" containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , RNA, Bacterial/metabolism , Ribonucleases/metabolism , Thermus thermophilus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , High-Throughput Nucleotide Sequencing , Microscopy, Electron , Models, Molecular , Protein Conformation , Protein Subunits , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Ribonucleases/chemistry , Ribonucleases/genetics , Sequence Analysis, RNA , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Thermus thermophilus/genetics
17.
J Struct Biol ; 209(1): 107416, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31726096

ABSTRACT

Single particle analysis for structure determination in cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as current reconstruction algorithms are not designed to handle heterogeneous mixtures of structures from many distinct macromolecular complexes. We extend on long established methods and demonstrate that relating two-dimensional projection images by their common lines in a graphical framework is sufficient for partitioning distinct protein and multiprotein complexes within the same data set. The feasibility of this approach is first demonstrated on a large set of synthetic reprojections from 35 unique macromolecular structures spanning a mass range of hundreds to thousands of kilodaltons. We then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and use existing methods to solve multiple three-dimensional structures ab initio. Incorporating methods to sort single particle cryo-EM data from extremely heterogeneous mixtures will alleviate the need for stringent purification and pave the way toward investigation of samples containing many unique structures.


Subject(s)
Cryoelectron Microscopy , Image Processing, Computer-Assisted , Macromolecular Substances/ultrastructure , Multiprotein Complexes/ultrastructure , Imaging, Three-Dimensional , Macromolecular Substances/chemistry , Multiprotein Complexes/chemistry
18.
J Biol Chem ; 294(5): 1602-1608, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30541924

ABSTRACT

Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.


Subject(s)
Caenorhabditis elegans Proteins/ultrastructure , Caenorhabditis elegans/embryology , Embryo, Nonmammalian/metabolism , Macromolecular Substances/ultrastructure , Microscopy, Electron/methods , Ribosomes/ultrastructure , Single-Cell Analysis/methods , Animals , Caenorhabditis elegans/metabolism , Embryo, Nonmammalian/cytology , Models, Biological
19.
Langmuir ; 36(26): 7345-7355, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32482072

ABSTRACT

The aggregation of amyloid-ß (Aß) is associated with the onset of Alzheimer's disease (AD) and involves a complex kinetic pathway as monomers self-assemble into fibrils. A central feature of amyloid fibrils is the existence of multiple structural polymorphs, which complicates the development of disease-relevant structure-function relationships. Developing these relationships requires new methods to control fibril structure. In this work, we evaluated the effect that mesoporous silicas (SBA-15) functionalized with hydrophobic (SBA-PFDTS) and hydrophilic groups (SBA-PEG) have on the aggregation kinetics and resulting structure of Aß1-40 fibrils. The hydrophilic SBA-PEG had little effect on amyloid kinetics, while as-synthesized and hydrophobic SBA-PFDTS accelerated aggregation kinetics. Subsequently, we quantified the relative population of fibril structures formed in the presence of each material using electron microscopy. Fibrils formed from Aß1-40 exposed to SBA-PEG were structurally similar to control fibrils. In contrast, Aß1-40 incubated with SBA-15 or SBA-PFDTS formed fibrils with shorter crossover distances that were more structurally representative of fibrils found in AD patient derived samples. Overall, our results suggest that mesoporous silicas and other exogenous materials are promising scaffolds for the de novo production of specific fibril polymorphs of Aß1-40 and other amyloidogenic proteins.


Subject(s)
Alzheimer Disease , Amyloid , Amyloid beta-Peptides , Humans , Kinetics , Peptide Fragments , Silicon Dioxide
20.
J Chem Inf Model ; 60(5): 2424-2429, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32129623

ABSTRACT

Rapid developments in cryogenic electron microscopy have opened new avenues to probe the structures of protein assemblies in their near native states. Recent studies have begun applying single -particle analysis to heterogeneous mixtures, revealing the potential of structural-omics approaches that combine the power of mass spectrometry and electron microscopy. Here we highlight advances and challenges in sample preparation, data processing, and molecular modeling for handling increasingly complex mixtures. Such advances will help structural-omics methods extend to cellular-level models of structural biology.


Subject(s)
Biology , Proteins , Mass Spectrometry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL