Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Publication year range
1.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593796

ABSTRACT

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Subject(s)
Epigenesis, Genetic , Interferon Type I , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Memory B Cells , Animals , Interferon Type I/metabolism , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Mice , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Immunologic Memory/immunology , Chronic Disease , B-Lymphocyte Subsets/immunology , Single-Cell Analysis
2.
Cell ; 153(4): 785-96, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663778

ABSTRACT

A naive CD4(+) T cell population specific for a microbial peptide:major histocompatibility complex II ligand (p:MHCII) typically consists of about 100 cells, each with a different T cell receptor (TCR). Following infection, this population produces a consistent ratio of effector cells that activate microbicidal functions of macrophages or help B cells make antibodies. We studied the mechanism that underlies this division of labor by tracking the progeny of single naive T cells. Different naive cells produced distinct ratios of macrophage and B cell helpers but yielded the characteristic ratio when averaged together. The effector cell pattern produced by a given naive cell correlated with the TCR-p:MHCII dwell time or the amount of p:MHCII. Thus, the consistent production of effector cell subsets by a polyclonal population of naive cells results from averaging the diverse behaviors of individual clones, which are instructed in part by the strength of TCR signaling.


Subject(s)
Bacterial Infections/immunology , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation , Receptors, Antigen, T-Cell/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Histocompatibility Antigens Class II/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology
3.
N Engl J Med ; 386(8): 735-743, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35196427

ABSTRACT

BACKGROUND: Covalent (irreversible) Bruton's tyrosine kinase (BTK) inhibitors have transformed the treatment of multiple B-cell cancers, especially chronic lymphocytic leukemia (CLL). However, resistance can arise through multiple mechanisms, including acquired mutations in BTK at residue C481, the binding site of covalent BTK inhibitors. Noncovalent (reversible) BTK inhibitors overcome this mechanism and other sources of resistance, but the mechanisms of resistance to these therapies are currently not well understood. METHODS: We performed genomic analyses of pretreatment specimens as well as specimens obtained at the time of disease progression from patients with CLL who had been treated with the noncovalent BTK inhibitor pirtobrutinib. Structural modeling, BTK-binding assays, and cell-based assays were conducted to study mutations that confer resistance to noncovalent BTK inhibitors. RESULTS: Among 55 treated patients, we identified 9 patients with relapsed or refractory CLL and acquired mechanisms of genetic resistance to pirtobrutinib. We found mutations (V416L, A428D, M437R, T474I, and L528W) that were clustered in the kinase domain of BTK and that conferred resistance to both noncovalent BTK inhibitors and certain covalent BTK inhibitors. Mutations in BTK or phospholipase C gamma 2 (PLCγ2), a signaling molecule and downstream substrate of BTK, were found in all 9 patients. Transcriptional activation reflecting B-cell-receptor signaling persisted despite continued therapy with noncovalent BTK inhibitors. CONCLUSIONS: Resistance to noncovalent BTK inhibitors arose through on-target BTK mutations and downstream PLCγ2 mutations that allowed escape from BTK inhibition. A proportion of these mutations also conferred resistance across clinically approved covalent BTK inhibitors. These data suggested new mechanisms of genomic escape from established covalent and novel noncovalent BTK inhibitors. (Funded by the American Society of Hematology and others.).


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Mutation , Phospholipase C gamma , Protein Kinase Inhibitors , Humans , Middle Aged , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/ultrastructure , Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Phospholipase C gamma/genetics , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Sequence Analysis, RNA , Signal Transduction/drug effects
4.
Blood ; 141(19): 2359-2371, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36626250

ABSTRACT

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Subject(s)
Antineoplastic Agents , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasms, Second Primary , Humans , Melphalan , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplasms, Second Primary/chemically induced , Neoplasms, Second Primary/genetics , Antineoplastic Agents/pharmacology
5.
Trends Immunol ; 43(8): 674-686, 2022 08.
Article in English | MEDLINE | ID: mdl-35850914

ABSTRACT

Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.


Subject(s)
Hematologic Neoplasms , Neoplasms , Alternative Splicing , Hematologic Neoplasms/genetics , Humans , Mutation/genetics , Neoplasms/genetics , RNA Splicing/genetics
6.
J Immunol ; 210(8): 1156-1165, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36883850

ABSTRACT

The study of Ag-specific lymphocytes has been a key advancement in immunology over the past few decades. The development of multimerized probes containing Ags, peptide:MHC complexes, or other ligands was one innovation allowing the direct study of Ag-specific lymphocytes by flow cytometry. Although these types of study are now common and performed by thousands of laboratories, quality control and assessment of probe quality are often minimal. In fact, many of these types of probe are made in-house, and protocols vary between laboratories. Although peptide:MHC multimers can often be obtained from commercial sources or core facilities, few such services exist for Ag multimers. To ensure high quality and consistency with ligand probes, we have developed an easy and robust multiplexed approach using commercially available beads able to bind Abs specific for the ligand of interest. Using this assay, we have sensitively assessed the performance of peptide:MHC and Ag tetramers and have found considerable batch-to-batch variability in performance and stability over time more easily than using murine or human cell-based assays. This bead-based assay can also reveal common production errors such as miscalculation of Ag concentration. This work could set the stage for the development of standardized assays for all commonly used ligand probes to limit laboratory-to-laboratory technical variation and experimental failure caused by probe underperformance.


Subject(s)
Peptides , T-Lymphocytes, Cytotoxic , Humans , Animals , Mice , Ligands , Histocompatibility Antigens Class I/metabolism , HLA-A2 Antigen , Histocompatibility Antigens/metabolism
7.
Nature ; 574(7778): 432-436, 2019 10.
Article in English | MEDLINE | ID: mdl-31597964

ABSTRACT

SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Neoplasms/genetics , RNA Splicing , Spliceosomes/metabolism , Animals , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , Mice , Neoplasm Transplantation , Neoplasms/pathology , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , Spliceosomes/genetics , Transcription Factors/metabolism
8.
Nature ; 571(7765): 355-360, 2019 07.
Article in English | MEDLINE | ID: mdl-31270458

ABSTRACT

Defining the transcriptomic identity of malignant cells is challenging in the absence of surface markers that distinguish cancer clones from one another, or from admixed non-neoplastic cells. To address this challenge, here we developed Genotyping of Transcriptomes (GoT), a method to integrate genotyping with high-throughput droplet-based single-cell RNA sequencing. We apply GoT to profile 38,290 CD34+ cells from patients with CALR-mutated myeloproliferative neoplasms to study how somatic mutations corrupt the complex process of human haematopoiesis. High-resolution mapping of malignant versus normal haematopoietic progenitors revealed an increasing fitness advantage with myeloid differentiation of cells with mutated CALR. We identified the unfolded protein response as a predominant outcome of CALR mutations, with a considerable dependency on cell identity, as well as upregulation of the NF-κB pathway specifically in uncommitted stem cells. We further extended the GoT toolkit to genotype multiple targets and loci that are distant from transcript ends. Together, these findings reveal that the transcriptional output of somatic mutations in myeloproliferative neoplasms is dependent on the native cell identity.


Subject(s)
Genotype , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Neoplasms/genetics , Neoplasms/pathology , Transcriptome/genetics , Animals , Antigens, CD34/metabolism , Calreticulin/genetics , Cell Line , Cell Proliferation , Clone Cells/classification , Clone Cells/metabolism , Clone Cells/pathology , Endoribonucleases/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/classification , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Models, Molecular , Myeloproliferative Disorders/classification , NF-kappa B/metabolism , Neoplasms/classification , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Protein Serine-Threonine Kinases/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Unfolded Protein Response/genetics
9.
Blood ; 140(25): 2663-2671, 2022 12 22.
Article in English | MEDLINE | ID: mdl-35930750

ABSTRACT

Vemurafenib, an oral BRAF inhibitor, has demonstrated high response rates in relapsed/refractory (R/R) hairy cell leukemia (HCL). However, little is known about long-term outcomes and response to retreatment. Herein, we report the results of 36 patients with R/R HCL treated with vemurafenib from the United States arm of the phase 2 clinical trial (NCT01711632). The best overall response rate was 86%, including 33% complete response (CR) and 53% partial response (PR). After a median follow-up of 40 months, 21 of 31 responders (68%) experienced relapse with a median relapse-free survival (RFS) of 19 months (range, 12.5-53.9 months). There was no significant difference in the RFS for patients with CR vs PR. Fourteen of 21 (67%) relapsed patients were retreated with vemurafenib, with 86% achieving complete hematologic response. Two patients acquired resistance to vemurafenib with the emergence of new KRAS and CDKN2A mutations, respectively. Six of 12 (50%) responders to vemurafenib retreatment experienced another relapse with a median RFS of 12.7 months. Overall survival (OS) was 82% at 4 years, with a significantly shorter OS in patients who relapsed within 1 year of initial treatment with vemurafenib. Higher cumulative doses or a longer duration of treatment did not lengthen the durability of response. All adverse events in the retreatment cohort were grade 1/2 except for 1 case of a grade 3 rash and 1 grade 3 fever/pneumonia. Our data suggest that vemurafenib retreatment is a safe and effective option for patients with R/R HCL.


Subject(s)
Antineoplastic Agents , Leukemia, Hairy Cell , Humans , Vemurafenib/therapeutic use , Leukemia, Hairy Cell/drug therapy , Leukemia, Hairy Cell/genetics , Proto-Oncogene Proteins B-raf/genetics , Protein Kinase Inhibitors/therapeutic use , Remission Induction , Antineoplastic Agents/adverse effects
10.
Immunity ; 42(2): 252-264, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25692701

ABSTRACT

T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors.


Subject(s)
Cell Differentiation/immunology , Kruppel-Like Transcription Factors/immunology , Th1 Cells/cytology , Th1 Cells/immunology , Adoptive Transfer , Animals , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , B-Lymphocytes/immunology , DNA-Binding Proteins/biosynthesis , Down-Regulation , GATA3 Transcription Factor/biosynthesis , Gene Knockout Techniques , Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/genetics , Lectins, C-Type/biosynthesis , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-bcl-6 , Receptors, Lysosphingolipid/biosynthesis , Receptors, Lysosphingolipid/metabolism , Sphingosine-1-Phosphate Receptors , T-Box Domain Proteins/biosynthesis , Transcription Factors/biosynthesis , Transcription Factors/metabolism
11.
Nature ; 559(7712): 125-129, 2018 07.
Article in English | MEDLINE | ID: mdl-29950729

ABSTRACT

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Subject(s)
Aminopyridines/pharmacology , Drug Resistance, Neoplasm/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutant Proteins/genetics , Mutation , Protein Multimerization/genetics , Triazines/pharmacology , Alleles , Allosteric Site/drug effects , Allosteric Site/genetics , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Progression , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Glutamine/genetics , Glutarates/blood , Glutarates/metabolism , HEK293 Cells , Humans , Isoleucine/genetics , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Inbred C57BL , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Triazines/chemistry , Triazines/therapeutic use
12.
J Hand Surg Am ; 49(2): 124-140, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38108682

ABSTRACT

PURPOSE: Controversy exists regarding the best option for revision surgery in refractory cubital tunnel syndrome (CuTS). The purpose of this systematic review was to evaluate the effectiveness of revision surgery and determine the optimal surgical approach for patients requiring revision surgery for CuTS. METHODS: A literature search was conducted. Characteristics of the included studies were summarized descriptively. The risk ratio between patient-reported preoperative and postoperative outcomes relating to pain, motor, and sensory deficits was calculated. A meta-regression analysis was performed to evaluate the postoperative symptom improvements based on the type of secondary surgery. Random-effects meta-analysis and descriptive statistics were used when appropriate. RESULTS: A total of 471 patients were evaluated in 20 studies. In total, 254 (53.9%) male and 217 (46.1%) female patients, with an average age of 49.2 ± 14.1 years, were included in this study. Pain was the most common symptom (n = 346, 81.6%), followed by sensory and motor dysfunction in 342 (80.6%) and 223 (52.6%) patients, respectively. Meta-analysis comparing preoperative and postoperative symptoms between patients who had submuscular transposition (SMT), subcutaneous transposition (SCT), and neurolysis showed that a significant subgroup difference exists between the types of revision surgery in sensory and motor improvements. Meta-regression showed that SMT was associated with better outcomes compared with SCT in motor and sensory improvements. CONCLUSIONS: Revision surgery for CuTS can be useful for addressing recurrent and persistent symptoms. Compared with neurolysis and SCT, SMT seems to be the superior option for revision surgery, demonstrating substantial improvement in all symptom domains. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.


Subject(s)
Cubital Tunnel Syndrome , Ulnar Nerve , Humans , Male , Female , Adult , Middle Aged , Ulnar Nerve/surgery , Cubital Tunnel Syndrome/surgery , Cubital Tunnel Syndrome/diagnosis , Neurosurgical Procedures/methods , Decompression, Surgical/methods , Pain , Patient Reported Outcome Measures , Retrospective Studies
13.
Aesthetic Plast Surg ; 48(6): 1142-1155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845550

ABSTRACT

INTRODUCTION: Reduction mammaplasties are routinely performed on women of child-bearing age, yet there still exists some uncertainty regarding a patient's ability to breastfeed following the procedure. This is due to inconsistent definitions of "successful" breastfeeding, a variety of pedicles implemented, and inadequate follow-up in the published literature. Our aim was to summarize the current data and provide clear recommendations for counseling patients on expected breastfeeding outcomes following reduction mammaplasty. METHODS: A systematic review and meta-analysis in accordance with the PRISMA guidelines was conducted. We included papers that reported proportion of breastfeeding ability following reduction mammaplasty. RESULTS: We identified 33 papers that met our inclusion criteria. We found that women who undergo reduction mammaplasty are at a 3.5 times increased odds of not being able to breastfeed compared to controls. Overall, reduction mammaplasty patients have a breastfeeding success rate of 62%. The breastfeeding success rate for patients with inferior pedicles was 64%, superior pedicles was 59%, and lateral pedicles was 55%. No conclusions could be drawn regarding medial, central, vertical, and horizontal pedicles on breastfeeding ability. CONCLUSION: Current data suggest that women undergoing reduction mammaplasty have an increased odds of unsuccessful breastfeeding when compared to similar women who have not undergone the procedure. Based on the current literature, pedicle type does play a role in rate of breastfeeding success, although there is a need for further research on the aforementioned pedicles. Physicians should be aware of the likelihood of successful breastfeeding following reduction mammaplasty so that patients can be more thoroughly counseled prior to a decision for surgery. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Breast Feeding , Mammaplasty , Humans , Female , Follow-Up Studies , Treatment Outcome , Retrospective Studies , Mammaplasty/methods , Esthetics , Hypertrophy/surgery
14.
J Cell Mol Med ; 27(4): 587-590, 2023 02.
Article in English | MEDLINE | ID: mdl-36722323

ABSTRACT

XPO1 (Exportin-1) is the nuclear export protein responsible for the normal shuttling of several proteins and RNA species between the nucleocytoplasmic compartment of eukaryotic cells. XPO1 recognizes the nuclear export signal (NES) of its cargo proteins to facilitate its export. Alterations of nuclear export have been shown to play a role in oncogenesis in several types of solid tumour and haematologic cancers. Over more than a decade, there has been substantial progress in targeting nuclear export in cancer using selective XPO1 inhibitors. This has resulted in recent approval for the first-in-class drug selinexor for use in relapsed, refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL). Despite these successes, not all patients respond effectively to XPO1 inhibition and there has been lack of biomarkers for response to XPO1 inhibitors in the clinic. Using haematologic malignancy cell lines and samples from patients with myelodysplastic neoplasms treated with selinexor, we have identified XPO1, NF-κB(p65), MCL-1 and p53 protein levels as protein markers of response to XPO1 inhibitor therapy. These markers could lead to the identification of response upon XPO1 inhibition for more accurate decision-making in the personalized treatment of cancer patients undergoing treatment with selinexor.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Humans , Karyopherins/genetics , Active Transport, Cell Nucleus , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics
15.
Am J Hematol ; 98(1): 79-89, 2023 01.
Article in English | MEDLINE | ID: mdl-36251406

ABSTRACT

Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Stem Cell Transplantation , Remission Induction , Transplantation, Homologous , Neoplasm, Residual/genetics
16.
Lancet ; 397(10277): 892-901, 2021 03 06.
Article in English | MEDLINE | ID: mdl-33676628

ABSTRACT

BACKGROUND: Covalent Bruton's tyrosine kinase (BTK) inhibitors are efficacious in multiple B-cell malignancies, but patients discontinue these agents due to resistance and intolerance. We evaluated the safety and efficacy of pirtobrutinib (working name; formerly known as LOXO-305), a highly selective, reversible BTK inhibitor, in these patients. METHODS: Patients with previously treated B-cell malignancies were enrolled in a first-in-human, multicentre, open-label, phase 1/2 trial of the BTK inhibitor pirtobrutinib. The primary endpoint was the maximum tolerated dose (phase 1) and overall response rate (ORR; phase 2). This trial is registered with ClinicalTrials.gov, NCT03740529. FINDINGS: 323 patients were treated with pirtobrutinib across seven dose levels (25 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, and 300 mg once per day) with linear dose-proportional exposures. No dose-limiting toxicities were observed and the maximum tolerated dose was not reached. The recommended phase 2 dose was 200 mg daily. Adverse events in at least 10% of 323 patients were fatigue (65 [20%]), diarrhoea (55 [17%]), and contusion (42 [13%]). The most common adverse event of grade 3 or higher was neutropenia (32 [10%]). There was no correlation between pirtobrutinib exposure and the frequency of grade 3 treatment-related adverse events. Grade 3 atrial fibrillation or flutter was not observed, and grade 3 haemorrhage was observed in one patient in the setting of mechanical trauma. Five (1%) patients discontinued treatment due to a treatment-related adverse event. In 121 efficacy evaluable patients with chronic lymphocytic leukaemia (CLL) or small lymphocytic lymphoma (SLL) treated with a previous covalent BTK inhibitor (median previous lines of treatment 4), the ORR with pirtobrutinib was 62% (95% CI 53-71). The ORR was similar in CLL patients with previous covalent BTK inhibitor resistance (53 [67%] of 79), covalent BTK inhibitor intolerance (22 [52%] of 42), BTK C481-mutant (17 [71%] of 24) and BTK wild-type (43 [66%] of 65) disease. In 52 efficacy evaluable patients with mantle cell lymphoma (MCL) previously treated with covalent BTK inhibitors, the ORR was 52% (95% CI 38-66). Of 117 patients with CLL, SLL, or MCL who responded, all but eight remain progression-free to date. INTERPRETATION: Pirtobrutinib was safe and active in multiple B-cell malignancies, including patients previously treated with covalent BTK inhibitors. Pirtobrutinib might address a growing unmet need for alternative therapies for these patients. FUNDING: Loxo Oncology.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, B-Cell/drug therapy , Lymphoma, Mantle-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphoma, B-Cell/pathology , Lymphoma, Mantle-Cell/pathology , Male , Middle Aged , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Treatment Outcome
17.
Blood ; 135(13): 1032-1043, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31961934

ABSTRACT

Genes encoding the RNA splicing factors SF3B1, SRSF2, and U2AF1 are subject to frequent missense mutations in clonal hematopoiesis and diverse neoplastic diseases. Most "spliceosomal" mutations affect specific hotspot residues, resulting in splicing changes that promote disease pathophysiology. However, a subset of patients carries spliceosomal mutations that affect non-hotspot residues, whose potential functional contributions to disease are unstudied. Here, we undertook a systematic characterization of diverse rare and private spliceosomal mutations to infer their likely disease relevance. We used isogenic cell lines and primary patient materials to discover that 11 of 14 studied rare and private mutations in SRSF2 and U2AF1 induced distinct splicing alterations, including partially or completely phenocopying the alterations in exon and splice site recognition induced by hotspot mutations or driving "dual" phenocopies that mimicked 2 co-occurring hotspot mutations. Our data suggest that many rare and private spliceosomal mutations contribute to disease pathogenesis and illustrate the utility of molecular assays to inform precision medicine by inferring the potential disease relevance of newly discovered mutations.


Subject(s)
Genetic Association Studies , Mutation , Penetrance , Phenotype , Spliceosomes/genetics , Cell Line, Tumor , Computational Biology/methods , Exons , Gene Expression Profiling , Humans , RNA Splice Sites , RNA Splicing , RNA Splicing Factors/genetics , Transcriptome
18.
Blood ; 136(13): 1477-1486, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32640014

ABSTRACT

Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, ∼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.


Subject(s)
Epistasis, Genetic , Hematologic Neoplasms/genetics , Mutation , RNA Splicing Factors/genetics , RNA Splicing , Alleles , DNA Mutational Analysis , Genomics , Humans , Leukemia, Myeloid/genetics , Single-Cell Analysis
19.
J Immunol ; 204(3): 498-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31882518

ABSTRACT

Upon Ag exposure, naive B cells expressing BCR able to bind Ag can undergo robust proliferation and differentiation that can result in the production of Ab-secreting and memory B cells. The factors determining whether an individual naive B cell will proliferate following Ag encounter remains unclear. In this study, we found that polyclonal naive murine B cell populations specific for a variety of foreign Ags express high levels of the orphan nuclear receptor Nur77, which is known to be upregulated downstream of BCR signaling as a result of cross-reactivity with self-antigens in vivo. Similarly, a fraction of naive human B cells specific for clinically-relevant Ags derived from respiratory syncytial virus and HIV-1 also exhibited an IgMLOW IgD+ phenotype, which is associated with self-antigen cross-reactivity. Functionally, naive B cells expressing moderate levels of Nur77 are most likely to proliferate in vivo following Ag injection. Together, our data indicate that BCR cross-reactivity with self-antigen is a common feature of populations of naive B cells specific for foreign Ags and a moderate level of cross-reactivity primes individual cells for optimal proliferative responses following Ag exposure.


Subject(s)
Autoantigens/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , Antibody Formation , Cell Differentiation , Cells, Cultured , Immunologic Memory , Lymphocyte Activation , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/genetics
20.
JAMA ; 328(9): 872-880, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36066514

ABSTRACT

Importance: Myelodysplastic neoplasms (MDS), formerly known as myelodysplastic syndromes, are clonal hematopoietic malignancies that cause morphologic bone marrow dysplasia along with anemia, neutropenia, or thrombocytopenia. MDS are associated with an increased risk of acute myeloid leukemia (AML). The yearly incidence of MDS is approximately 4 per 100 000 people in the United States and is higher among patients with advanced age. Observations: MDS are characterized by reduced numbers of peripheral blood cells, an increased risk of acute myeloid leukemia transformation, and reduced survival. The median age at diagnosis is approximately 70 years, and the yearly incidence rate increases to 25 per 100 000 in people aged 65 years and older. Risk factors associated with MDS include older age and prior exposures to toxins such as chemotherapy or radiation therapy. MDS are more common in men compared with women (with yearly incidence rates of approximately 5.4 vs 2.9 per 100 000). MDS typically has an insidious presentation, consisting of signs and symptoms associated with anemia, thrombocytopenia, and neutropenia. MDS can be categorized into subtypes that are associated with lower or higher risk for acute myeloid leukemia transformation and that help with therapy selection. Patients with lower-risk MDS have a median survival of approximately 3 to 10 years, whereas patients with higher-risk disease have a median survival of less than 3 years. Therapy for lower-risk MDS is selected based on whether the primary clinical characteristic is anemia, thrombocytopenia, or neutropenia. Management focuses on treating symptoms and reducing the number of required transfusions in patients with low-risk disease. For patients with lower-risk MDS, erythropoiesis stimulating agents, such as recombinant humanized erythropoietin or the longer-acting erythropoietin, darbepoetin alfa, can improve anemia in 15% to 40% of patients for a median of 8 to 23 months. For those with higher-risk MDS, hypomethylating agents such as azacitidine, decitabine, or decitabine/cedazuridine are first-line therapy. Hematopoietic cell transplantation is considered for higher-risk patients and represents the only potential cure. Conclusions and Relevance: MDS are diagnosed in approximately 4 per 100 000 people in the United States and are associated with a 5-year survival rate of approximately 37%. Treatments are tailored to the patient's disease characteristics and comorbidities and range from supportive care with or without erythropoiesis-stimulating agents for patients with low-risk MDS to hypomethylating agents, such as azacitidine or decitabine, for patients with higher-risk MDS. Hematopoietic cell transplantation is potentially curative and should be considered for patients with higher-risk MDS at the time of diagnosis.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Antineoplastic Agents/therapeutic use , Azacitidine/therapeutic use , Decitabine/therapeutic use , Erythropoietin/therapeutic use , Female , Hematinics/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/therapy , Male , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/therapy , Neutropenia/etiology , Prognosis , Thrombocytopenia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL