ABSTRACT
BACKGROUND: The 8-aminoquinolines, primaquine and tafenoquine, are the only available drugs for the radical cure of Plasmodium vivax hypnozoites. Previous evidence suggests that there is dose-dependent 8-aminoquinoline induced methaemoglobinaemia and that higher methaemoglobin concentrations are associated with a lower risk of P. vivax recurrence. We undertook a systematic review and individual patient data meta-analysis to examine the utility of methaemoglobin as a population-level surrogate endpoint for 8-aminoquinoline antihypnozoite activity to prevent P. vivax recurrence. METHODS AND FINDINGS: We conducted a systematic search of Medline, Embase, Web of Science, and the Cochrane Library, from 1 January 2000 to 29 September 2022, inclusive, of prospective clinical efficacy studies of acute, uncomplicated P. vivax malaria mono-infections treated with radical curative doses of primaquine. The day 7 methaemoglobin concentration was the primary surrogate outcome of interest. The primary clinical outcome was the time to first P. vivax recurrence between day 7 and day 120 after enrolment. We used multivariable Cox proportional-hazards regression with site random-effects to characterise the time to first recurrence as a function of the day 7 methaemoglobin percentage (log base 2 transformed), adjusted for the partner schizonticidal drug, the primaquine regimen duration as a proxy for the total primaquine dose (mg base/kg), the daily primaquine dose (mg/kg), and other factors. The systematic review protocol was registered with PROSPERO (CRD42023345956). We identified 219 P. vivax efficacy studies, of which 8 provided relevant individual-level data from patients treated with primaquine; all were randomised, parallel arm clinical trials assessed as having low or moderate risk of bias. In the primary analysis data set, there were 1,747 patients with normal glucose-6-phosphate dehydrogenase (G6PD) activity enrolled from 24 study sites across 8 different countries (Indonesia, Brazil, Vietnam, Thailand, Peru, Colombia, Ethiopia, and India). We observed an increasing dose-response relationship between the daily weight-adjusted primaquine dose and day 7 methaemoglobin level. For a given primaquine dose regimen, an observed doubling in day 7 methaemoglobin percentage was associated with an estimated 30% reduction in the risk of P. vivax recurrence (adjusted hazard ratio = 0.70; 95% confidence interval [CI] [0.57, 0.86]; p = 0.0005). These pooled estimates were largely consistent across the study sites. Using day 7 methaemoglobin as a surrogate endpoint for recurrence would reduce required sample sizes by approximately 40%. Study limitations include the inability to distinguish between recrudescence, reinfection, and relapse in P. vivax recurrences. CONCLUSIONS: For a given primaquine regimen, higher methaemoglobin on day 7 was associated with a reduced risk of P. vivax recurrence. Under our proposed causal model, this justifies the use of methaemoglobin as a population-level surrogate endpoint for primaquine antihypnozoite activity in patients with P. vivax malaria who have normal G6PD activity.
Subject(s)
Antimalarials , Malaria, Vivax , Methemoglobin , Primaquine , Malaria, Vivax/drug therapy , Humans , Primaquine/therapeutic use , Antimalarials/therapeutic use , Methemoglobin/metabolism , Methemoglobin/analysis , Biomarkers/blood , Plasmodium vivax/drug effects , Recurrence , Treatment OutcomeABSTRACT
In early symptomatic COVID-19 treatment, high dose oral favipiravir did not accelerate viral clearance. BACKGROUND: Favipiravir, an anti-influenza drug, has in vitro antiviral activity against SARS-CoV-2. Clinical trial evidence to date is inconclusive. Favipiravir has been recommended for the treatment of COVID-19 in some countries. METHODS: In a multicentre open-label, randomised, controlled, adaptive platform trial, low-risk adult patients with early symptomatic COVID-19 were randomised to one of ten treatment arms including high dose oral favipiravir (3.6g on day 0 followed by 1.6g daily to complete 7 days treatment) or no study drug. The primary outcome was the rate of viral clearance (derived under a linear mixed-effects model from the daily log10 viral densities in standardised duplicate oropharyngeal swab eluates taken daily over 8 days [18 swabs per patient]), assessed in a modified intention-to-treat population (mITT). The safety population included all patients who received at least one dose of the allocated intervention. This ongoing adaptive platform trial was registered at ClinicalTrials.gov (NCT05041907) on 13/09/2021. RESULTS: In the final analysis, the mITT population contained data from 114 patients randomised to favipiravir and 126 patients randomised concurrently to no study drug. Under the linear mixed-effects model fitted to all oropharyngeal viral density estimates in the first 8 days from randomisation (4,318 swabs), there was no difference in the rate of viral clearance between patients given favipiravir and patients receiving no study drug; a -1% (95% credible interval: -14 to 14%) difference. High dose favipiravir was well-tolerated. INTERPRETATION: Favipiravir does not accelerate viral clearance in early symptomatic COVID-19. The viral clearance rate estimated from quantitative measurements of oropharyngeal eluate viral densities assesses the antiviral efficacy of drugs in vivo with comparatively few studied patients.
Subject(s)
Amides , COVID-19 , Pyrazines , Adult , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome , Antiviral Agents/therapeutic useABSTRACT
BACKGROUND: Uncertainty over the therapeutic benefit of parenteral remdesivir in coronavirus disease 2019 (COVID-19) has resulted in varying treatment guidelines. METHODS: In a multicenter open-label, controlled, adaptive, pharmacometric platform trial, low-risk adult patients with early symptomatic COVID-19 were randomized to 1 of 8 treatment arms including intravenous remdesivir (200 mg followed by 100 mg daily for 5 days) or no study drug. The primary outcome was the rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance (estimated under a linear model fit to the daily log10 viral densities, days 0-7) in standardized duplicate oropharyngeal swab eluates, in a modified intention-to-treat population. This ongoing adaptive trial is registered at ClinicalTrials.gov (NCT05041907). RESULTS: The 2 study arms enrolled 131 patients (remdesivir n = 67, no study drug n = 64) and estimated viral clearance rates from a median of 18 swab samples per patient (a total of 2356 quantitative polymerase chain reactions). Under the linear model, compared with the contemporaneous control arm (no study drug), remdesivir accelerated mean estimated viral clearance by 42% (95% credible interval, 18%-73%). CONCLUSIONS: Parenteral remdesivir accelerates viral clearance in early symptomatic COVID-19. Pharmacometric assessment of therapeutics using the method described can determine in vivo clinical antiviral efficacy rapidly and efficiently.
Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome , Antiviral AgentsABSTRACT
BACKGROUND: Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS: This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS: One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS: In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION: The trial is registered at ISRCTN 11594437.
Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , alpha-Thalassemia , Male , Female , Humans , Child , Child, Preschool , Primaquine , Antimalarials/adverse effects , alpha-Thalassemia/drug therapy , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/chemically induced , Hemoglobins/analysis , Plasmodium falciparumABSTRACT
BACKGROUND: Imperfect adherence is a major barrier to effective primaquine radical cure of Plasmodium vivax. This study investigated the effect of reduced adherence on the risk of P. vivax recurrence. METHODS: Efficacy studies of patients with uncomplicated P. vivax malaria, including a treatment arm with daily primaquine, published between January 1999 and March 2020 were identified. Individual patient data from eligible studies were pooled using standardized methodology. Adherence to primaquine was inferred from i) the percentage of supervised doses and ii) the total mg/kg dose received compared to the target total mg/kg dose per protocol. The effect of adherence to primaquine on the incidence of P. vivax recurrence between days 7 and 90 was investigated by Cox regression analysis. RESULTS: Of 82 eligible studies, 32 were available including 6917 patients from 18 countries. For adherence assessed by percentage of supervised primaquine, 2790 patients (40.3%) had poor adherence (≤ 50%) and 4127 (59.7%) had complete adherence. The risk of recurrence by day 90 was 14.0% [95% confidence interval: 12.1-16.1] in patients with poor adherence compared to 5.8% [5.0-6.7] following full adherence; p = 0.014. After controlling for age, sex, baseline parasitaemia, and total primaquine dose per protocol, the rate of the first recurrence was higher following poor adherence compared to patients with full adherence (adjusted hazard ratio (AHR) = 2.3 [1.8-2.9]). When adherence was quantified by total mg/kg dose received among 3706 patients, 347 (9.4%) had poor adherence, 88 (2.4%) had moderate adherence, and 3271 (88.2%) had complete adherence to treatment. The risks of recurrence by day 90 were 8.2% [4.3-15.2] in patients with poor adherence and 4.9% [4.1-5.8] in patients with full adherence; p < 0.001. CONCLUSION: Reduced adherence, including less supervision, increases the risk of vivax recurrence.
Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Vivax , Humans , Primaquine/adverse effects , Antimalarials/pharmacology , Plasmodium vivax , Recurrence , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Malaria, Vivax/complications , Folic Acid Antagonists/pharmacologyABSTRACT
AIMS: Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized. METHODS: We conducted a secondary analysis of a pharmacokinetic study of the cardiac safety of amodiaquine (10 mg base/kg/day over 3 days) in 54 Kenyan adults (≥18 years) with uncomplicated malaria. Nonlinear mixed effects modelling was used to assess amodiaquine and desethylamodiaquine concentration-effect relationships for vital sign (pulse rate, blood pressure) and electrocardiograph interval (QT, QRS, PR) outcomes. We also measured the spontaneous beating heart rate after cumulative dosing of amodiaquine and desethylamodiaquine in isolated mouse atrial preparations. RESULTS: Amodiaquine and desethylamodiaquine caused concentration-dependent mean decreases in pulse rate (1.9 beats/min per 100 nmol/L; 95% confidence interval: 1.5-2.4), supine systolic blood pressure (1.7 mmHg per 100 nmol/L; 1.2-2.1), erect systolic blood pressure (1.5 mmHg per 100 nmol/L; 1.0-2.0) and erect diastolic blood pressure (1.4 mmHg per 100 nmol/L; 1.0-1.7). The mean QT interval prolongation was 1.4 ms per 100 nmol/L irrespective of correction factor after adjustment for residual heart rate dependency. There was no significant effect of drug concentration on postural change in blood pressure or PR and QRS intervals. In mouse atria, the spontaneous beating rate was significantly reduced by amodiaquine (n = 6) and desethylamodiaquine (n = 8) at 3 µmol/L (amodiaquine: 10 ± 2%; desethylamodiaquine: 12 ± 3%) and 10 µmol/L (amodiaquine: 50 ± 7%; desethylamodiaquine: 46 ± 6%) concentrations with no significant difference in potency between the 2 compounds. CONCLUSION: Amodiaquine and desethylamodiaquine have concentration-dependent effects on heart rate, blood pressure, and ventricular repolarization.
Subject(s)
Antimalarials , Malaria , Animals , Mice , Amodiaquine/adverse effects , Antimalarials/adverse effects , Kenya , Malaria/drug therapy , Malaria/prevention & controlABSTRACT
INTRODUCTION: Symptoms reported following the administration of investigational drugs play an important role in decisions for registration and treatment guidelines. However, symptoms are subjective, and interview methods to quantify them are difficult to standardise. We explored differences in symptom reporting across study sites of a multicentre antimalarial trial, with the aim of informing trial design and the interpretation of safety and tolerability data. METHODS: Data were derived from the IMPROV trial, a randomised, placebo-controlled double blinded trial of high dose primaquine to prevent Plasmodium vivax recurrence conducted in eight study sites in Afghanistan, Ethiopia, Indonesia and Vietnam. At each follow up visit a 13-point symptom questionnaire was completed. The number and percentage of patients with clinically relevant symptoms following the administration of primaquine or placebo, were reported by study site including vomiting, diarrhoea, anorexia, nausea, abdominal pain and dizziness. Multivariable logistic regression was used to estimate the confounder-adjusted site-specific proportion of each symptom. RESULTS: A total of 2,336 patients were included. The greatest variation between sites in the proportion of patients reporting symptoms was for anorexia between day 0 and day 13: 97.3% (361/371) of patients in Arba Minch, Ethiopia, reported the symptom compared with 4.7% (5/106) of patients in Krong Pa, Vietnam. Differences attenuated slightly after adjusting for treatment arm, age, sex, day 0 parasite density and fever; with the adjusted proportion for anorexia ranging from 4.8% to 97.0%. Differences between sites were greater for symptoms graded as mild or moderate compared to those rated as severe. Differences in symptom reporting were greater between study sites than between treatment arms within the same study site. CONCLUSION: Despite standardised training, there was large variation in symptom reporting across trial sites. The reporting of severe symptoms was less skewed compared to mild and moderate symptoms, which are likely to be more subjective. Trialists should clearly distinguish between safety and tolerability outcomes. Differences between trial arms were much less variable across sites, suggesting that the relative difference in reported symptoms between intervention and control group is more relevant than absolute numbers and should be reported when possible. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01814683; March 20th, 2013.
Subject(s)
Antimalarials , Humans , Antimalarials/adverse effects , Primaquine , Anorexia , Afghanistan , Control GroupsABSTRACT
BACKGROUND: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.
Subject(s)
Arrhythmias, Cardiac/physiopathology , Electrocardiography , Heart Conduction System/physiopathology , Heart Rate , Malaria/physiopathology , Action Potentials , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/parasitology , Body Temperature Regulation , Cardiotoxicity , Child , Child, Preschool , Female , Heart Conduction System/drug effects , Heart Conduction System/parasitology , Heart Rate/drug effects , Humans , Infant , Malaria/diagnosis , Malaria/drug therapy , Malaria/parasitology , Male , Middle Aged , Predictive Value of Tests , Risk Assessment , Risk Factors , Severity of Illness Index , Treatment Outcome , Young AdultABSTRACT
BACKGROUND: Primaquine is the only widely used drug that prevents Plasmodium vivax malaria relapses, but adherence to the standard 14-day regimen is poor. We aimed to assess the efficacy of a shorter course (7 days) of primaquine for radical cure of vivax malaria. METHODS: We did a randomised, double-blind, placebo-controlled, non-inferiority trial in eight health-care clinics (two each in Afghanistan, Ethiopia, Indonesia, and Vietnam). Patients (aged ≥6 months) with normal glucose-6-phosphate dehydrogenase (G6PD) and presenting with uncomplicated vivax malaria were enrolled. Patients were given standard blood schizontocidal treatment and randomly assigned (2:2:1) to receive 7 days of supervised primaquine (1·0 mg/kg per day), 14 days of supervised primaquine (0·5 mg/kg per day), or placebo. The primary endpoint was the incidence rate of symptomatic P vivax parasitaemia during the 12-month follow-up period, assessed in the intention-to-treat population. A margin of 0·07 recurrences per person-year was used to establish non-inferiority of the 7-day regimen compared with the 14-day regimen. This trial is registered at ClinicalTrials.gov (NCT01814683). FINDINGS: Between July 20, 2014, and Nov 25, 2017, 2336 patients were enrolled. The incidence rate of symptomatic recurrent P vivax malaria was 0·18 (95% CI 0·15 to 0·21) recurrences per person-year for 935 patients in the 7-day primaquine group and 0·16 (0·13 to 0·18) for 937 patients in the 14-day primaquine group, a difference of 0·02 (-0·02 to 0·05, p=0·3405). The incidence rate for 464 patients in the placebo group was 0·96 (95% CI 0·83 to 1·08) recurrences per person-year. Potentially drug-related serious adverse events within 42 days of starting treatment were reported in nine (1·0%) of 935 patients in the 7-day group, one (0·1%) of 937 in the 14-day group and none of 464 in the control arm. Four of the serious adverse events were significant haemolysis (three in the 7-day group and one in the 14-day group). INTERPRETATION: In patients with normal G6PD, 7-day primaquine was well tolerated and non-inferior to 14-day primaquine. The short-course regimen might improve adherence and therefore the effectiveness of primaquine for radical cure of P vivax malaria. FUNDING: UK Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust through the Joint Global Health Trials Scheme (MR/K007424/1) and the Bill & Melinda Gates Foundation (OPP1054404).
Subject(s)
Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Primaquine/administration & dosage , Adolescent , Adult , Antimalarials/adverse effects , Antimalarials/therapeutic use , Child , Child, Preschool , Double-Blind Method , Drug Administration Schedule , Equivalence Trials as Topic , Female , Follow-Up Studies , Humans , Malaria, Vivax/parasitology , Male , Medication Adherence/statistics & numerical data , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium vivax/isolation & purification , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Secondary Prevention/methods , Young AdultABSTRACT
BACKGROUND: Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD-) patients treated weekly with the World Health Organization-recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). METHODS: We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. RESULTS: Seventy-five patients (male sex, 63) aged 5-63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/ß-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9â16.3 g/dL] and 13.26 g/dL [range, 9.6â16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, -5.8-0 g/dL; mean, -1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, -0.25â0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. CONCLUSIONS: The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. CLINICAL TRIALS REGISTRATION: ACTRN12613000003774.
Subject(s)
Antimalarials/administration & dosage , Chemoprevention/methods , Glucosephosphate Dehydrogenase Deficiency , Hemolysis , Malaria, Vivax/drug therapy , Primaquine/administration & dosage , Secondary Prevention/methods , Adolescent , Adult , Antimalarials/adverse effects , Asian People , Chemoprevention/adverse effects , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase , Hemoglobins/analysis , Humans , Male , Middle Aged , Primaquine/adverse effects , Reticulocyte Count , Young AdultABSTRACT
BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent parasitaemia had a mean haemoglobin concentration - 0.72 g/dL [- 0.90, - 0.54] lower than patients without recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in haemoglobin > 5 g/dL. CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.
Subject(s)
Anemia, Hemolytic/etiology , Antimalarials/adverse effects , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Primaquine/adverse effects , Adult , Chloroquine/therapeutic use , Female , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Hemolysis/drug effects , Humans , Male , Middle Aged , Plasmodium vivax/drug effectsABSTRACT
Western Cambodia is recognized as the epicenter of Plasmodium falciparum multidrug resistance. Recent reports of the efficacy of dihydroartemisinin (DHA)-piperaquine (PP), the latest of the artemisinin-based combination therapies (ACTs) recommended by the WHO, have prompted further investigations. The clinical efficacy of dihydroartemisinin-piperaquine in uncomplicated falciparum malaria was assessed in western and eastern Cambodia over 42 days. Day 7 plasma piperaquine concentrations were measured and day 0 isolates tested for in vitro susceptibilities to piperaquine and mefloquine, polymorphisms in the K13 gene, and the copy number of the Pfmdr-1 gene. A total of 425 patients were recruited in 2011 to 2013. The proportion of patients with recrudescent infections was significantly higher in western (15.4%) than in eastern (2.5%) Cambodia (P <10(-3)). Day 7 plasma PP concentrations and median 50% inhibitory concentrations (IC50) of PP were independent of treatment outcomes, in contrast to median mefloquine IC50, which were found to be lower for isolates from patients with recrudescent infections (18.7 versus 39.7 nM; P = 0.005). The most significant risk factor associated with DHA-PP treatment failure was infection by parasites carrying the K13 mutant allele (odds ratio [OR], 17.5; 95% confidence interval [CI], 1 to 308; P = 0.04). Our data show evidence of P. falciparum resistance to PP in western Cambodia, an area of widespread artemisinin resistance. New therapeutic strategies, such as the use of triple ACTs, are urgently needed and must be tested. (This study has been registered at the Australian New Zealand Clinical Trials Registry under registration no. ACTRN12614000344695.).
Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance, Multiple/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Adolescent , Adult , Antigens, Bacterial/metabolism , Antigens, Surface/metabolism , Cambodia , Child , Child, Preschool , Drug Therapy, Combination/methods , Female , Humans , Malaria, Falciparum/metabolism , Male , Mefloquine/therapeutic use , Middle Aged , Treatment Failure , Young AdultABSTRACT
BACKGROUND: Primaquine is used to prevent Plasmodium vivax relapse; however, it is not implemented in many malaria-endemic countries, including Cambodia, for fear of precipitating primaquine-induced acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd). Reluctance to use primaquine is reinforced by a lack of quality safety data. This study was conducted to assess the tolerability of a primaquine regimen in Cambodian severely deficient G6PD variants to ascertain whether a weekly primaquine could be given without testing for G6PDd. METHODS: From January 2013 to January 2014, Cambodians with acute vivax malaria were treated with dihydroartemisinin/piperaquine on days (D) 0, 1 and 2 with weekly doses of primaquine 0.75 mg/kg for 8 weeks (starting on D0, last dose on D49), and followed until D56. Participants' G6PD status was confirmed by G6PD genotype and measured G6PD activity. The primary outcome was treatment completion without primaquine toxicity defined as any one of: (1) severe anaemia (haemoglobin [Hb] <7 g/dL), (2) a >25 % fractional fall in Hb from D0, (3) the need for a blood transfusion, (4) haemoglobinuria, (5) acute kidney injury (an increase in baseline serum creatinine >50 %) or (6) methaemoglobinaemia >20 %. RESULTS: We enrolled 75 patients with a median age of 24 years (range 5-63); 63 patients (84 %) were male. Eighteen patients were G6PDd (17/18 had the Viangchan variant) and had D0 G6PD activity ranging from 0.1 to 1.5 U/g Hb (median 0.85 U/g Hb). In the 57 patients with normal G6PD (G6PDn), D0 G6PD activity ranged from 6.9 to 18.5 U/g Hb (median 12 U/g Hb). Median D0 Hb concentrations were similar (P = 0.46) between G6PDd (13 g/dL, range 9.6-16) and G6PDn (13.5 g/dL, range 9-16.3) and reached a nadir on D2 in both groups: 10.8 g/dL (8.2-15.3) versus 12.4 g/dL (8.8-15.2) (P = 0.006), respectively. By D7, five G6PDd patients (27.7 %) had a >25 % fall in Hb, compared to 0 G6PDn patients (P = 0.00049). One of these G6PDd patients required a blood transfusion (D0-D5 Hb, 10.0-7.2 g/dL). No patients developed severe anaemia, haemoglobinuria, a methaemoglobin concentration >4.9 %, or acute kidney injury. CONCLUSIONS: Vivax-infected G6PDd Cambodian patients demonstrated significant, mostly transient, falls in Hb and one received a blood transfusion. Weekly primaquine in G6PDd patients mandates medical supervision and pre-treatment screening for G6PD status. The feasibility of implementing a package of G6PDd testing and supervised primaquine should be explored. TRIAL REGISTRATION: The trial was registered on 3/1/2013 and the registration number is ACTRN12613000003774.
Subject(s)
Anemia, Hemolytic , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Plasmodium vivax/drug effects , Primaquine , Secondary Prevention/methods , Adolescent , Adult , Anemia, Hemolytic/chemically induced , Anemia, Hemolytic/diagnosis , Anemia, Hemolytic/therapy , Antimalarials/administration & dosage , Antimalarials/adverse effects , Blood Transfusion/statistics & numerical data , Cambodia/epidemiology , Child , Comorbidity , Drug Administration Schedule , Female , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/physiopathology , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/physiopathology , Malaria, Vivax/prevention & control , Male , Middle Aged , Outcome Assessment, Health Care , Primaquine/administration & dosage , Primaquine/adverse effectsABSTRACT
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
Subject(s)
Antimalarials/therapeutic use , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/transmission , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Aminoquinolines/therapeutic use , Humans , Time Factors , Treatment OutcomeABSTRACT
Background: Primaquine is an 8-aminoquinoline antimalarial. It is the only widely available treatment to prevent relapses of Plasmodium vivax malaria. The 8-aminoquinolines cause dose-dependent haemolysis in glucose-6-phosphate dehydrogenase deficiency (G6PDd). G6PDd is common in malaria endemic areas but testing is often not available. As a consequence primaquine is underused. Methods: We conducted an adaptive pharmacometric study to characterise the relationship between primaquine dose and haemolysis in G6PDd. The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing. Hemizygous G6PDd healthy adult Thai and Burmese male volunteers were admitted to the Hospital for Tropical Diseases in Bangkok. In Part 1, volunteers were given ascending dose primaquine regimens whereby daily doses were increased from 7.5 mg up to 45 mg over 15-20 days. In Part 2 conducted at least 6 months later, a single primaquine 45 mg dose was given. Results: 24 volunteers were enrolled in Part 1, and 16 in Part 2 (13 participated in both studies). In three volunteers, the ascending dose regimen was stopped because of haemolysis (n=1) and asymptomatic increases in transaminases (n=2; one was hepatitis E positive). Otherwise the ascending regimens were well tolerated with no drug-related serious adverse events. In Part 1, the median haemoglobin concentration decline was 3.7 g/dL (range: 2.1-5.9; relative decline of 26% [range: 15-40%]). Primaquine doses up to 0.87 mg/kg/day were tolerated subsequently without clinically significant further falls in haemoglobin. In Part 2, the median haemoglobin concentration decline was 1.7 g/dL (range 0.9-4.1; relative fall of 12% [range: 7-30% decrease]). The ascending dose primaquine regimens gave seven times more drug but resulted in only double the haemoglobin decline. Conclusions: In patients with Southeast Asian G6PDd variants, full radical cure treatment can be given in under 3 weeks compared with the current 8-week regimen. Funding: Medical Research Council of the United Kingdom (MR/R015252/1) and Wellcome (093956/Z/10/C, 223253/Z/21/Z). Clinical trial number: Thai Clinical Trial Registry: TCTR20170830002 and TCTR20220317004.
Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Adult , Humans , Male , Antimalarials/therapeutic use , Healthy Volunteers , Hemoglobins , Hemolysis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/adverse effects , ThailandABSTRACT
BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Primaquine/therapeutic use , Antimalarials/adverse effects , Plasmodium vivax , Artesunate/therapeutic use , Prospective Studies , Retrospective Studies , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Malaria, Vivax/epidemiology , Malaria/drug therapy , RecurrenceABSTRACT
BACKGROUND: Primaquine radical cure is used to treat dormant liver-stage parasites and prevent relapsing Plasmodium vivax malaria but is limited by concerns of haemolysis. We undertook a systematic review and individual patient data meta-analysis to investigate the haematological safety of different primaquine regimens for P vivax radical cure. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2-3 and between day 0 and days 5-7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680. FINDINGS: Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2-3 were -0·6 g/dL (95% CI -0·7 to -0·5), -0·7 g/dL (-0·8 to -0·5), -0·6 g/dL (-0·7 to -0·4), and -0·5 g/dL (-0·7 to -0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2-3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias. INTERPRETATION: Treatment of patients with G6PD activity of 30% or higher with 0·25-0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25-1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.