Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849372

ABSTRACT

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Subject(s)
APOBEC Deaminases/genetics , Neoplasms/genetics , APOBEC Deaminases/metabolism , Cell Line , Cell Line, Tumor , DNA/metabolism , DNA Mutational Analysis/methods , Databases, Genetic , Exome , Genome, Human/genetics , Heterografts , Humans , Mutagenesis , Mutation/genetics , Mutation Rate , Retroelements , Exome Sequencing/methods
2.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656891

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Disease Progression , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mutation , 5' Untranslated Regions , Adult , Aged , Aged, 80 and over , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 5 , Female , Gene Dosage , Genome, Human , Humans , Male , Middle Aged , Prospective Studies , Telomerase/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
3.
Nature ; 629(8013): 910-918, 2024 May.
Article in English | MEDLINE | ID: mdl-38693263

ABSTRACT

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Subject(s)
Carcinoma, Renal Cell , Environmental Exposure , Geography , Kidney Neoplasms , Mutagens , Mutation , Female , Humans , Male , Aristolochic Acids/adverse effects , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/chemically induced , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Genome, Human/genetics , Genomics , Hypertension/epidemiology , Incidence , Japan/epidemiology , Kidney Neoplasms/genetics , Kidney Neoplasms/epidemiology , Kidney Neoplasms/chemically induced , Mutagens/adverse effects , Obesity/epidemiology , Risk Factors , Romania/epidemiology , Serbia/epidemiology , Thailand/epidemiology , Tobacco Smoking/adverse effects , Tobacco Smoking/genetics
4.
Cell ; 149(5): 994-1007, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608083

ABSTRACT

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic , Clonal Evolution , Mutation , Algorithms , Chromosome Aberrations , Female , Humans , Point Mutation
5.
Cell ; 149(5): 979-93, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22608084

ABSTRACT

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Subject(s)
Breast Neoplasms/genetics , DNA Mutational Analysis , Genome-Wide Association Study , Mutation , APOBEC-1 Deaminase , BRCA2 Protein/genetics , Cytidine Deaminase/metabolism , Female , Genes, BRCA1 , High-Throughput Nucleotide Sequencing , Humans
6.
Nature ; 598(7881): 473-478, 2021 10.
Article in English | MEDLINE | ID: mdl-34646017

ABSTRACT

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Subject(s)
Liver Diseases/genetics , Liver Diseases/metabolism , Liver/metabolism , Mutation/genetics , Active Transport, Cell Nucleus/genetics , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Chronic Disease , Cohort Studies , Fatty Acids, Nonesterified/metabolism , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Insulin Resistance , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Male , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
7.
Cell ; 144(1): 27-40, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21215367

ABSTRACT

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Neoplasms/pathology , Bone Neoplasms/genetics , Cell Line, Tumor , Chromosome Painting , Female , Gene Rearrangement , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Middle Aged
8.
Nucleic Acids Res ; 52(D1): D1210-D1217, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183204

ABSTRACT

The Catalogue Of Somatic Mutations In Cancer (COSMIC), https://cancer.sanger.ac.uk/cosmic, is an expert-curated knowledgebase providing data on somatic variants in cancer, supported by a comprehensive suite of tools for interpreting genomic data, discerning the impact of somatic alterations on disease, and facilitating translational research. The catalogue is accessed and used by thousands of cancer researchers and clinicians daily, allowing them to quickly access information from an immense pool of data curated from over 29 thousand scientific publications and large studies. Within the last 4 years, COSMIC has substantially expanded its utility by adding new resources: the Mutational Signatures catalogue, the Cancer Mutation Census, and Actionability. To improve data accessibility and interoperability, somatic variants have received stable genomic identifiers that are associated with their genomic coordinates in GRCh37 and GRCh38, and new export files with reduced data redundancy have been made available for download.


Subject(s)
Databases, Genetic , Genomics , Neoplasms , Humans , Databases, Factual , Knowledge Bases , Mutation , Neoplasms/genetics , Databases, Genetic/trends , Internet
9.
N Engl J Med ; 379(15): 1416-1430, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30304655

ABSTRACT

BACKGROUND: Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment. METHODS: We sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. We developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort. RESULTS: A total of 2035 patients were included in the analysis. A total of 33 genes had driver mutations in at least 5 patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis. We defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, we created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. The predicted and observed outcomes correlated well in internal cross-validation of a training cohort and in an independent external cohort. Even within individual categories of existing prognostic schemas, our models substantially improved predictive accuracy. CONCLUSIONS: Comprehensive genomic characterization identified distinct genetic subgroups and provided a classification of myeloproliferative neoplasms on the basis of causal biologic mechanisms. Integration of genomic data with clinical variables enabled the personalized predictions of patients' outcomes and may support the treatment of patients with myeloproliferative neoplasms. (Funded by the Wellcome Trust and others.).


Subject(s)
Calreticulin/genetics , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/genetics , Precision Medicine , Receptors, Thrombopoietin/genetics , Bayes Theorem , DNA, Neoplasm/analysis , Disease Progression , Disease-Free Survival , Humans , Multivariate Analysis , Myeloproliferative Disorders/classification , Phenotype , Prognosis , Proportional Hazards Models , Sequence Analysis, DNA
10.
N Engl J Med ; 374(23): 2209-2221, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27276561

ABSTRACT

BACKGROUND: Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS: We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS: We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2(R172) mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT00146120.).


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , DNA Mutational Analysis , Epistasis, Genetic , Gene Fusion , Genotype , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Middle Aged , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Proportional Hazards Models , Prospective Studies , RNA Splicing , Survival Analysis
11.
Nature ; 486(7403): 400-4, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22722201

ABSTRACT

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Oncogenes/genetics , Age Factors , Breast Neoplasms/classification , Breast Neoplasms/pathology , Cytosine/metabolism , DNA Mutational Analysis , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Neoplasm Grading , Reproducibility of Results , Signal Transduction/genetics
12.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21248752

ABSTRACT

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Mice , Pancreatic Neoplasms/genetics
13.
Nucleic Acids Res ; 43(Database issue): D805-11, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25355519

ABSTRACT

COSMIC, the Catalogue Of Somatic Mutations In Cancer (http://cancer.sanger.ac.uk) is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer. Our latest release (v70; Aug 2014) describes 2 002 811 coding point mutations in over one million tumor samples and across most human genes. To emphasize depth of knowledge on known cancer genes, mutation information is curated manually from the scientific literature, allowing very precise definitions of disease types and patient details. Combination of almost 20,000 published studies gives substantial resolution of how mutations and phenotypes relate in human cancer, providing insights into the stratification of mutations and biomarkers across cancer patient populations. Conversely, our curation of cancer genomes (over 12,000) emphasizes knowledge breadth, driving discovery of unrecognized cancer-driving hotspots and molecular targets. Our high-resolution curation approach is globally unique, giving substantial insight into molecular biomarkers in human oncology. In addition, COSMIC also details more than six million noncoding mutations, 10,534 gene fusions, 61,299 genome rearrangements, 695,504 abnormal copy number segments and 60,119,787 abnormal expression variants. All these types of somatic mutation are annotated to both the human genome and each affected coding gene, then correlated across disease and mutation types.


Subject(s)
Databases, Nucleic Acid , Genes, Neoplasm , Mutation , Neoplasms/genetics , Genome, Human , Humans , Internet
14.
Nature ; 467(7319): 1109-13, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20981101

ABSTRACT

Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.


Subject(s)
Genomic Instability/genetics , Mutagenesis/genetics , Neoplasm Metastasis/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Cycle/genetics , Cell Lineage/genetics , Clone Cells/metabolism , Clone Cells/pathology , DNA Mutational Analysis , Disease Progression , Evolution, Molecular , Genes, Neoplasm/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Neoplasm Metastasis/pathology , Organ Specificity , Telomere/genetics , Telomere/pathology
15.
Nature ; 463(7278): 184-90, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20016488

ABSTRACT

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Subject(s)
Lung Neoplasms/etiology , Lung Neoplasms/genetics , Mutation/genetics , Nicotiana/adverse effects , Small Cell Lung Carcinoma/etiology , Small Cell Lung Carcinoma/genetics , Smoking/adverse effects , Carcinogens/toxicity , Cell Line, Tumor , DNA Copy Number Variations/drug effects , DNA Copy Number Variations/genetics , DNA Damage/genetics , DNA Helicases/genetics , DNA Mutational Analysis , DNA Repair/genetics , DNA-Binding Proteins/genetics , Exons/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/drug effects , Genome, Human/genetics , Humans , Mutagenesis, Insertional/drug effects , Mutagenesis, Insertional/genetics , Mutation/drug effects , Promoter Regions, Genetic/genetics , Sequence Deletion/genetics
16.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20054297

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Subject(s)
Carcinoma, Renal Cell/genetics , Genes, Neurofibromatosis 2 , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Kidney Neoplasms/genetics , Nuclear Proteins/genetics , Oxidoreductases, N-Demethylating/genetics , Carcinoma, Renal Cell/pathology , Cell Hypoxia/genetics , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histone Demethylases , Humans , Kidney Neoplasms/pathology , Mutation/genetics , Sequence Analysis, DNA
17.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20016485

ABSTRACT

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasms/genetics , Adult , Cell Line, Tumor , DNA Damage/genetics , DNA Mutational Analysis , DNA Repair/genetics , Gene Dosage/genetics , Humans , Loss of Heterozygosity/genetics , Male , Melanoma/etiology , Melanoma/genetics , MicroRNAs/genetics , Mutagenesis, Insertional/genetics , Neoplasms/etiology , Polymorphism, Single Nucleotide/genetics , Precision Medicine , Sequence Deletion/genetics , Ultraviolet Rays
18.
Blood ; 122(22): 3616-27; quiz 3699, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24030381

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.


Subject(s)
Mutation , Myelodysplastic Syndromes/genetics , Aged , Aged, 80 and over , Cohort Studies , Disease Progression , Epistasis, Genetic , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Male , Middle Aged , Myelodysplastic-Myeloproliferative Diseases/genetics , Oncogenes , Prognosis , RNA Splicing/genetics , Spliceosomes/genetics
19.
Nature ; 462(7276): 1005-10, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20033038

ABSTRACT

Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.


Subject(s)
Breast Neoplasms/genetics , Chromosome Aberrations , Gene Rearrangement/genetics , Genome, Human/genetics , Cell Line, Tumor , Cells, Cultured , DNA Breaks , Female , Genomic Library , Humans , Sequence Analysis, DNA
20.
Nucleic Acids Res ; 41(12): 6119-38, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630320

ABSTRACT

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.


Subject(s)
Cell Cycle/genetics , DNA Copy Number Variations , Blastomeres/chemistry , Cell Line, Tumor , Chromosome Aberrations , Genome, Human , Genomics/methods , Genotyping Techniques , Humans , Mutation , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL