Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32619424

ABSTRACT

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Subject(s)
Immunologic Memory/physiology , Lymphoma, Large B-Cell, Diffuse/pathology , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Histone Deacetylases/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
2.
Nat Immunol ; 22(2): 240-253, 2021 02.
Article in English | MEDLINE | ID: mdl-33432228

ABSTRACT

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/metabolism , Immunity, Humoral , Lymphoma, B-Cell/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/immunology , Germinal Center/pathology , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Cohesins
3.
Cell ; 171(2): 270-272, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28985559

ABSTRACT

In this issue of Cell, Reddy et al. report integrative genetic characterization of diffuse large B cell lymphomas (DLBCL), including large-scale exome capture, transcriptomes, CRISPR screens, and integrative clinical biomarker studies. This provides the first comprehensive overview of DLBCL biology and the basis for future precision medicine approaches to this disease.


Subject(s)
Exome , Lymphoma, Large B-Cell, Diffuse/genetics , Humans , Mutation , Precision Medicine , Signal Transduction
4.
Nature ; 589(7841): 299-305, 2021 01.
Article in English | MEDLINE | ID: mdl-33299181

ABSTRACT

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromatin/chemistry , Chromatin/genetics , Histones/deficiency , Histones/genetics , Lymphoma/genetics , Lymphoma/pathology , Alleles , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Self Renewal , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Tumor Suppressor , Germinal Center/pathology , Histones/metabolism , Humans , Lymphoma/metabolism , Mice , Mutation , Stem Cells/metabolism , Stem Cells/pathology
5.
Immunity ; 45(3): 497-512, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27637145

ABSTRACT

During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.


Subject(s)
Antibody Affinity/immunology , B-Lymphocytes/immunology , Genome/immunology , Germinal Center/immunology , Locus Control Region/immunology , Animals , Antibody Formation/immunology , Chromosomes, Human, Pair 3/immunology , Epigenesis, Genetic/immunology , Humans , Immunity, Humoral/immunology , Mice , Promoter Regions, Genetic/immunology , Proto-Oncogene Proteins c-bcl-6/immunology
6.
Curr Opin Hematol ; 24(4): 402-408, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28375986

ABSTRACT

PURPOSE OF REVIEW: There is mounting evidence that heterogeneity of the epigenome is a feature of many cancers, including B-cell lymphomas, and presents important clinical implications. The purpose of this review is to explain the biological and clinical relevance of this epigenetic phenomenon in B-cell neoplasms. RECENT FINDINGS: Here, we summarize new findings demonstrating that B-cell lymphomas display increased DNA methylation heterogeneity compared to their normal counterparts. This plasticity of cytosine methylation manifests both as intertumor and intratumor heterogeneity and is associated with worse prognosis and poor clinical outcome in lymphoma patients. Recent studies of different subtypes of B-cell lymphomas have revealed that epigenetic aberrations and heterogeneous cytosine methylation patterning are common features of all neoplasms derived from B-lymphocytes, irrespective of maturation stage. With regard to mechanisms driving this process, recent reports suggest that cytosine methylation heterogeneity arises through passive and active processes. One factor implicated in active generation of cytosine methylation heterogeneity is activation-induced cytidine deaminase, which mediates DNA methylation changes and introduces epigenetic heterogeneity in normal germinal center B cells, the cells of origin of mature B-cell neoplasms such as diffuse large B-cell lymphoma and follicular lymphoma. SUMMARY: Understanding the scope and mechanism of epigenetic heterogeneity in cancer is of paramount importance to our understanding of clonal plasticity and treatment responses in B-cell lymphomas.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Leukemia, B-Cell/genetics , Lymphoma, B-Cell/genetics , Animals , DNA Methylation , Germinal Center/metabolism , Humans , Leukemia, B-Cell/diagnosis , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/metabolism , Signal Transduction
7.
Cancer Cell ; 42(4): 583-604.e11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458187

ABSTRACT

ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.


Subject(s)
Lymphoma , Memory B Cells , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Lymphoma/genetics , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Cancer Discov ; 13(1): 216-243, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36264161

ABSTRACT

A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE: Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
B-Lymphocytes , Lymphoma, Large B-Cell, Diffuse , Humans , Animals , Mice , Aged , Prospective Studies , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Prognosis
9.
Science ; 379(6629): eabj7412, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656933

ABSTRACT

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.


Subject(s)
B-Lymphocytes , Cell Transformation, Neoplastic , Lymphoma, Large B-Cell, Diffuse , Neoplasm Proteins , Animals , Humans , Mice , Antibody Affinity/genetics , B-Lymphocytes/pathology , Germinal Center , Mutation , Neoplasm Proteins/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Cell Transformation, Neoplastic/genetics , Selection, Genetic
10.
Cancer Discov ; 12(8): 1922-1941, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35658124

ABSTRACT

Activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCL) have unfavorable outcomes and chronic activation of CARD11-BCL10-MALT1 (CBM) signal amplification complexes that form due to polymerization of BCL10 subunits, which is affected by recurrent somatic mutations in ABC-DLBCLs. Herein, we show that BCL10 mutants fall into at least two functionally distinct classes: missense mutations of the BCL10 CARD domain and truncation of its C-terminal tail. Truncating mutations abrogated a motif through which MALT1 inhibits BCL10 polymerization, trapping MALT1 in its activated filament-bound state. CARD missense mutations enhanced BCL10 filament formation, forming glutamine network structures that stabilize BCL10 filaments. Mutant forms of BCL10 were less dependent on upstream CARD11 activation and thus manifested resistance to BTK inhibitors, whereas BCL10 truncating but not CARD mutants were hypersensitive to MALT1 inhibitors. Therefore, BCL10 mutations are potential biomarkers for BTK inhibitor resistance in ABC-DLBCL, and further precision can be achieved by selecting therapy based on specific biochemical effects of distinct mutation classes. SIGNIFICANCE: ABC-DLBCLs feature frequent mutations of signaling mediators that converge on the CBM complex. We use structure-function approaches to reveal that BCL10 mutations fall into two distinct biochemical classes. Both classes confer resistance to BTK inhibitors, whereas BCL10 truncations confer hyperresponsiveness to MALT1 inhibitors, providing a road map for precision therapies in ABC-DLBCLs. See related commentary by Phelan and Oellerich, p. 1844. This article is highlighted in the In This Issue feature, p. 1825.


Subject(s)
B-Cell CLL-Lymphoma 10 Protein , Lymphoma, Large B-Cell, Diffuse , B-Cell CLL-Lymphoma 10 Protein/genetics , CARD Signaling Adaptor Proteins/genetics , Guanylate Cyclase/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mutation , Signal Transduction
11.
Cancer Discov ; 12(7): 1782-1803, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35443279

ABSTRACT

SETD2 is the sole histone methyltransferase responsible for H3K36me3, with roles in splicing, transcription initiation, and DNA damage response. Homozygous disruption of SETD2 yields a tumor suppressor effect in various cancers. However, SETD2 mutation is typically heterozygous in diffuse large B-cell lymphomas. Here we show that heterozygous Setd2 deficiency results in germinal center (GC) hyperplasia and increased competitive fitness, with reduced DNA damage checkpoint activity and apoptosis, resulting in accelerated lymphomagenesis. Impaired DNA damage sensing in Setd2-haploinsufficient germinal center B (GCB) and lymphoma cells associated with increased AICDA-induced somatic hypermutation, complex structural variants, and increased translocations including those activating MYC. DNA damage was selectively increased on the nontemplate strand, and H3K36me3 loss was associated with greater RNAPII processivity and mutational burden, suggesting that SETD2-mediated H3K36me3 is required for proper sensing of cytosine deamination. Hence, Setd2 haploinsufficiency delineates a novel GCB context-specific oncogenic pathway involving defective epigenetic surveillance of AICDA-mediated effects on transcribed genes. SIGNIFICANCE: Our findings define a B cell-specific oncogenic effect of SETD2 heterozygous mutation, which unleashes AICDA mutagenesis of nontemplate strand DNA in the GC reaction, resulting in lymphomas with heavy mutational burden. GC-derived lymphomas did not tolerate SETD2 homozygous deletion, pointing to a novel context-specific therapeutic vulnerability. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
B-Lymphocytes , Cytidine Deaminase , Germinal Center , Haploinsufficiency , Histone-Lysine N-Methyltransferase , Somatic Hypermutation, Immunoglobulin , Cytidine Deaminase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Homozygote , Humans , Sequence Deletion
12.
Cancer Discov ; 11(6): 1542-1561, 2021 06.
Article in English | MEDLINE | ID: mdl-33500244

ABSTRACT

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/drug therapy , Neoplastic Stem Cells/cytology , Remission Induction , Animals , Cell Line, Tumor/cytology , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Neoplasm Recurrence, Local/pathology , Phenotype
13.
Cancer Cell ; 37(5): 655-673.e11, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32396861

ABSTRACT

Follicular lymphomas (FLs) are slow-growing, indolent tumors containing extensive follicular dendritic cell (FDC) networks and recurrent EZH2 gain-of-function mutations. Paradoxically, FLs originate from highly proliferative germinal center (GC) B cells with proliferation strictly dependent on interactions with T follicular helper cells. Herein, we show that EZH2 mutations initiate FL by attenuating GC B cell requirement for T cell help and driving slow expansion of GC centrocytes that become enmeshed with and dependent on FDCs. By impairing T cell help, mutant EZH2 prevents induction of proliferative MYC programs. Thus, EZH2 mutation fosters malignant transformation by epigenetically reprograming B cells to form an aberrant immunological niche that reflects characteristic features of human FLs, explaining how indolent tumors arise from GC B cells.


Subject(s)
B-Lymphocytes/immunology , Cell Transformation, Neoplastic/immunology , Cellular Reprogramming , Enhancer of Zeste Homolog 2 Protein/genetics , Lymphoma, B-Cell/immunology , Lymphoma, Follicular/immunology , Mutation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Female , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/pathology , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Mice , Mice, Inbred C57BL
14.
Nat Cancer ; 1: 653-664, 2020.
Article in English | MEDLINE | ID: mdl-33569544

ABSTRACT

Cancer cells adapt their metabolic activities to support growth and proliferation. However, increased activity of metabolic enzymes is not usually considered an initiating event in the malignant process. Here, we investigate the possible role of the enzyme serine hydroxymethyltransferase-2 (SHMT2) in lymphoma initiation. SHMT2 localizes to the most frequent region of copy number gains at chromosome 12q14.1 in lymphoma. Elevated expression of SHMT2 cooperates with BCL2 in lymphoma development; loss or inhibition of SHMT2 impairs lymphoma cell survival. SHMT2 catalyzes the conversion of serine to glycine and produces an activated one-carbon unit that can be used to support S-adenosyl methionine synthesis. SHMT2 induces changes in DNA and histone methylation patterns leading to promoter silencing of previously uncharacterized mutational genes, such as SASH1 and PTPRM. Together, our findings reveal that amplification of SHMT2 in cooperation with BCL2 is sufficient in the initiation of lymphomagenesis through epigenetic tumor suppressor silencing.


Subject(s)
Glycine Hydroxymethyltransferase , Lymphoma , Cell Proliferation/genetics , Epigenesis, Genetic , Glycine Hydroxymethyltransferase/genetics , Humans , Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-2/genetics
15.
Cancer Discov ; 10(3): 440-459, 2020 03.
Article in English | MEDLINE | ID: mdl-31915197

ABSTRACT

CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to define a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBP-mutant cells in tandem with promoting antitumor immunity.This article is highlighted in the In This Issue feature, p. 327.


Subject(s)
CREB-Binding Protein/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Histone Deacetylases/genetics , Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Epigenome/genetics , Epigenome/immunology , Genes, MHC Class I/immunology , Histocompatibility Antigens Class II/immunology , Histone Acetyltransferases/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune System/drug effects , Immune System/immunology , Interferons/genetics , Interferons/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma/drug therapy , Lymphoma/immunology , Lymphoma/pathology , Mice , Mutation/genetics , Signal Transduction/drug effects
17.
Cancer Discov ; 9(7): 872-889, 2019 07.
Article in English | MEDLINE | ID: mdl-31076479

ABSTRACT

Disruption of epigenetic regulation is a hallmark of acute myeloid leukemia (AML), but epigenetic therapy is complicated by the complexity of the epigenome. Herein, we developed a long-term primary AML ex vivo platform to determine whether targeting different epigenetic layers with 5-azacytidine and LSD1 inhibitors would yield improved efficacy. This combination was most effective in TET2 mut AML, where it extinguished leukemia stem cells and particularly induced genes with both LSD1-bound enhancers and cytosine-methylated promoters. Functional studies indicated that derepression of genes such as GATA2 contributes to drug efficacy. Mechanistically, combination therapy increased enhancer-promoter looping and chromatin-activating marks at the GATA2 locus. CRISPRi of the LSD1-bound enhancer in patient-derived TET2 mut AML was associated with dampening of therapeutic GATA2 induction. TET2 knockdown in human hematopoietic stem/progenitor cells induced loss of enhancer 5-hydroxymethylation and facilitated LSD1-mediated enhancer inactivation. Our data provide a basis for rational targeting of cooperating aberrant promoter and enhancer epigenetic marks driven by mutant epigenetic modifiers. SIGNIFICANCE: Somatic mutations of genes encoding epigenetic modifiers are a hallmark of AML and potentially disrupt many components of the epigenome. Our study targets two different epigenetic layers at promoters and enhancers that cooperate to aberrant gene silencing, downstream of the actions of a mutant epigenetic regulator.This article is highlighted in the In This Issue feature, p. 813.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Animals , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer Elements, Genetic , Epigenome , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Genes, Tumor Suppressor , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins/genetics , Random Allocation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Cancer Discov ; 9(4): 546-563, 2019 04.
Article in English | MEDLINE | ID: mdl-30705065

ABSTRACT

We performed a genomic, transcriptomic, and immunophenotypic study of 347 patients with diffuse large B-cell lymphoma (DLBCL) to uncover the molecular basis underlying acquired deficiency of MHC expression. Low MHC-II expression defines tumors originating from the centroblast-rich dark zone of the germinal center (GC) that was associated with inferior prognosis. MHC-II-deficient tumors were characterized by somatically acquired gene mutations reducing MHC-II expression and a lower amount of tumor-infiltrating lymphocytes. In particular, we demonstrated a strong enrichment of EZH2 mutations in both MHC-I- and MHC-II-negative primary lymphomas, and observed reduced MHC expression and T-cell infiltrates in murine lymphoma models expressing mutant Ezh2 Y641. Of clinical relevance, EZH2 inhibitors significantly restored MHC expression in EZH2-mutated human DLBCL cell lines. Hence, our findings suggest a tumor progression model of acquired immune escape in GC-derived lymphomas and pave the way for development of complementary therapeutic approaches combining immunotherapy with epigenetic reprogramming. SIGNIFICANCE: We demonstrate how MHC-deficient lymphoid tumors evolve in a cell-of-origin-specific context. Specifically, EZH2 mutations were identified as a genetic mechanism underlying acquired MHC deficiency. The paradigmatic restoration of MHC expression by EZH2 inhibitors provides the rationale for synergistic therapies combining immunotherapies with epigenetic reprogramming to enhance tumor recognition and elimination.See related commentary by Velcheti et al., p. 472.This article is highlighted in the In This Issue feature, p. 453.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic/genetics , Animals , Cell Line, Tumor , Humans , Mice , Prognosis
19.
J Clin Invest ; 128(10): 4397-4412, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30024860

ABSTRACT

The paracaspase MALT1 plays an essential role in activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) downstream of B cell and TLR pathway genes mutated in these tumors. Although MALT1 is considered a compelling therapeutic target, the development of tractable and specific MALT1 protease inhibitors has thus far been elusive. Here, we developed a target engagement assay that provides a quantitative readout for specific MALT1-inhibitory effects in living cells. This enabled a structure-guided medicinal chemistry effort culminating in the discovery of pharmacologically tractable, irreversible substrate-mimetic compounds that bind the MALT1 active site. We confirmed that MALT1 targeting with compound 3 is effective at suppressing ABC DLBCL cells in vitro and in vivo. We show that a reduction in serum IL-10 levels exquisitely correlates with the drug pharmacokinetics and degree of MALT1 inhibition in vitro and in vivo and could constitute a useful pharmacodynamic biomarker to evaluate these compounds in clinical trials. Compound 3 revealed insights into the biology of MALT1 in ABC DLBCL, such as the role of MALT1 in driving JAK/STAT signaling and suppressing the type I IFN response and MHC class II expression, suggesting that MALT1 inhibition could prime lymphomas for immune recognition by cytotoxic immune cells.


Subject(s)
Caspase Inhibitors , Drug Delivery Systems , Lymphoma, Large B-Cell, Diffuse , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Neoplasm Proteins , Signal Transduction , Animals , Caspase Inhibitors/chemistry , Caspase Inhibitors/pharmacology , Catalytic Domain , Cell Line, Tumor , Female , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Mice , Mice, Inbred NOD , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/chemistry , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
20.
Nat Commun ; 9(1): 222, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335468

ABSTRACT

Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases.


Subject(s)
Cytidine Deaminase/genetics , Epigenesis, Genetic , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cytidine Deaminase/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL