Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37991365

ABSTRACT

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Subject(s)
Coinfection , Gene Expression Regulation, Viral , HIV Long Terminal Repeat , HIV-1 , HIV-2 , Interferons , RNA, Viral , tat Gene Products, Human Immunodeficiency Virus , Humans , Coinfection/immunology , Coinfection/virology , HIV Long Terminal Repeat/genetics , HIV-1/genetics , HIV-1/immunology , HIV-2/genetics , HIV-2/immunology , HIV-2/metabolism , RNA, Viral/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Interferons/immunology , Promoter Regions, Genetic/genetics , Binding, Competitive , RNA Polymerase II/metabolism , Transcription, Genetic
2.
FASEB J ; 37(11): e23220, 2023 11.
Article in English | MEDLINE | ID: mdl-37801035

ABSTRACT

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Subject(s)
COVID-19 , Cystic Fibrosis , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Patient Acuity , SARS-CoV-2
3.
J Nat Prod ; 85(3): 657-665, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35290044

ABSTRACT

Since early 2020, disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic, causing millions of infections and deaths worldwide. Despite rapid deployment of effective vaccines, it is apparent that the global community lacks multipronged interventions to combat viral infection and disease. A major limitation is the paucity of antiviral drug options representing diverse molecular scaffolds and mechanisms of action. Here we report the antiviral activities of three distinct marine natural products─homofascaplysin A (1), (+)-aureol (2), and bromophycolide A (3)─evidenced by their ability to inhibit SARS-CoV-2 replication at concentrations that are nontoxic toward human airway epithelial cells. These compounds stand as promising candidates for further exploration toward the discovery of novel drug leads against SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Biological Products/pharmacology , Epithelial Cells , Humans , SARS-CoV-2
4.
Retrovirology ; 18(1): 41, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937567

ABSTRACT

The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/pharmacology , Anti-Retroviral Agents , Capsid , Capsid Proteins/genetics
5.
Antimicrob Agents Chemother ; 65(12): e0116721, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34516245

ABSTRACT

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against wild-type (WT) and drug-resistant HIV-1 in phase III clinical trials. EFdA resistance is not well characterized. To study EFdA resistance patterns that may emerge in naive or tenofovir (TFV)-, emtricitabine/lamivudine (FTC/3TC)-, or zidovudine (AZT)-treated patients, we performed viral passaging experiments starting with WT, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless of the starting viral sequence, all selected EFdA-resistant variants included the M184V reverse transcriptase (RT) mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than either M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than was WT HIV-1. These mutants also had significantly lower specific infectivities than did WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT versus A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data suggest that EFdA is an excellent therapeutic candidate for naive, AZT-, FTC/3TC-, and especially tenofovir-treated patients.


Subject(s)
HIV-1 , Reverse Transcriptase Inhibitors , Deoxyadenosines/pharmacology , HIV-1/genetics , Humans , Lamivudine , Reverse Transcriptase Inhibitors/pharmacology
6.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32938764

ABSTRACT

HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.


Subject(s)
HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV-1/physiology , Cell Line , Cell Membrane/metabolism , Gene Expression , HEK293 Cells , Humans , Male , Protein Transport , T-Lymphocytes/virology , Virion/metabolism , Virus Replication
7.
FASEB J ; 34(7): 9433-9449, 2020 07.
Article in English | MEDLINE | ID: mdl-32496609

ABSTRACT

Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.


Subject(s)
Hepacivirus/physiology , Hepatitis C/prevention & control , Host-Pathogen Interactions , RNA Helicases/metabolism , Virus Replication , Hepacivirus/isolation & purification , Hepatitis C/pathology , Hepatitis C/virology , Humans , RNA Helicases/genetics
8.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31375589

ABSTRACT

The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.


Subject(s)
Cell Membrane/metabolism , Cytosol/metabolism , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/metabolism , Virion/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
9.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31619553

ABSTRACT

The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation.IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.


Subject(s)
HIV-1/genetics , Viral Matrix Proteins/chemistry , Virion/genetics , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Motifs , Amino Acid Substitution , Animals , Cell Line , Gene Expression , HIV-1/metabolism , HeLa Cells , Humans , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/metabolism , Mice , Models, Molecular , Mutation , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Multimerization , T-Lymphocytes/virology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virion/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
10.
Proc Natl Acad Sci U S A ; 113(2): E182-90, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26711999

ABSTRACT

The matrix (MA) domain of HIV Gag has important functions in directing the trafficking of Gag to sites of assembly and mediating the incorporation of the envelope glycoprotein (Env) into assembling particles. HIV-1 MA has been shown to form trimers in vitro; however, neither the presence nor the role of MA trimers has been documented in HIV-1 virions. We developed a cross-linking strategy to reveal MA trimers in virions of replication-competent HIV-1. By mutagenesis of trimer interface residues, we demonstrated a correlation between loss of MA trimerization and loss of Env incorporation. Additionally, we found that truncating the long cytoplasmic tail of Env restores incorporation of Env into MA trimer-defective particles, thus rescuing infectivity. We therefore propose a model whereby MA trimerization is required to form a lattice capable of accommodating the long cytoplasmic tail of HIV-1 Env; in the absence of MA trimerization, Env is sterically excluded from the assembling particle. These findings establish MA trimerization as an obligatory step in the assembly of infectious HIV-1 virions. As such, the MA trimer interface may represent a novel drug target for the development of antiretrovirals.


Subject(s)
HIV-1/metabolism , Protein Multimerization , Viral Matrix Proteins/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , Cross-Linking Reagents/pharmacology , Disulfides/metabolism , HeLa Cells , Humans , Models, Molecular , Mutation/genetics , Protein Structure, Tertiary , Threonine/genetics , Viral Matrix Proteins/metabolism , Virion/metabolism , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
11.
J Biol Chem ; 292(14): 6027-6028, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28389578

ABSTRACT

The viral restriction factor SERINC5 inhibits HIV-1 infection via unknown mechanisms. Sood and co-workers now show that SERINC5 suppresses HIV-1 fusogenicity and increases sensitivity to neutralizing antibodies by perturbing the folding of the fusion machinery. This work advances our understanding of host-virus interactions and provides a compelling case for considering the host immune system in studies of restriction factor mechanisms.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Membrane Proteins/immunology , Protein Folding , Virus Internalization , Humans
12.
J Virol ; 90(12): 5657-5664, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27030269

ABSTRACT

UNLABELLED: The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE: The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed better binding to Env CTs than the WT proteins, and CT binding correlated with MA trimerization. Our results suggest that multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation.


Subject(s)
HIV Antigens/chemistry , HIV Antigens/metabolism , HIV-1/metabolism , Mutation , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , HIV Antigens/genetics , HIV-1/genetics , Humans , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , RNA/metabolism , Virion/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics
13.
Curr Top Microbiol Immunol ; 389: 171-201, 2015.
Article in English | MEDLINE | ID: mdl-25731773

ABSTRACT

The advances made in the treatment of HIV-1 infection represent a major success of modern biomedical research, prolonging healthy life and reducing virus transmission. There remain, however, many challenges relating primarily to side effects of long-term therapy and the ever-present danger of the emergence of drug-resistant strains. To counter these threats, there is a continuing need for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle. The most successful current drugs target the viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN). In this review, we outline the advances made in targeting the Gag protein and its mature products, particularly capsid and nucleocapsid, and highlight possible targets for future pharmacological intervention.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Anti-HIV Agents/pharmacology , Gene Products, gag/antagonists & inhibitors , HIV-1 , Capsid Proteins/antagonists & inhibitors , Humans , Nucleocapsid/antagonists & inhibitors , Viral Matrix Proteins/antagonists & inhibitors , Virus Replication/drug effects
14.
PLoS Pathog ; 9(11): e1003739, 2013.
Article in English | MEDLINE | ID: mdl-24244165

ABSTRACT

The matrix (MA) domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env) glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.


Subject(s)
HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Envelope Protein gp41/genetics , HIV-1/genetics , HeLa Cells , Humans , Jurkat Cells , Mutation , gag Gene Products, Human Immunodeficiency Virus/genetics
15.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38518746

ABSTRACT

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Subject(s)
Capsid Proteins , HIV-1 , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Virus Assembly , Virus Replication , Antiviral Agents/pharmacology
16.
J Virol ; 86(19): 10724-32, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22837205

ABSTRACT

Hepatitis C virus (HCV) has been shown to induce autophagy and the unfolded protein response (UPR), but the mechanistic link between the induction of these two cellular processes remains unclear. We demonstrate here that HCV infection induces autophagy, as judged by accumulation of lipidated LC3-II, and that this induction occurs rapidly after infection, preceding the stimulation of the UPR, which occurs only at later stages, after the viral envelope glycoproteins have been expressed to high levels. Furthermore, both genotype 1b and 2a subgenomic replicons expressing nonstructural (NS3-5B) proteins and JFH-1 virus lacking the envelope glycoproteins potently induced autophagy in the absence of detectable UPR. This ability was also shared by a subgenomic replicon derived from the related GB virus B (GBV-B). We also show that small interfering RNA (siRNA)-mediated silencing of the key UPR inducer, Ire1, has no effect on HCV genome replication or the induction of autophagy, further demonstrating that the UPR is not required for these processes. Lastly, we demonstrate that the HCV replicase does not colocalize with autophagosomes, suggesting that the induction of autophagy is not required to generate the membrane platform for HCV RNA replication.


Subject(s)
Autophagy , Hepacivirus/metabolism , Hepatitis C/virology , Unfolded Protein Response , Cell Line , Gene Silencing , Genome, Viral , Genotype , Humans , Microscopy, Fluorescence/methods , Protein Denaturation , Protein Folding , RNA/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Replicon/genetics , Transcription, Genetic , Transfection
17.
Proc Natl Acad Sci U S A ; 107(25): 11549-54, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20534540

ABSTRACT

Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We show here that, in cells either infected with HCV or harboring an HCV subgenomic replicon, phosphorylation of AMPK at threonine 172 and concomitant AMPK activity are dramatically reduced. We demonstrate that this effect is mediated by activation of the serine/threonine kinase, protein kinase B, which inhibits AMPK by phosphorylating serine 485. The physiological significance of this inhibition is demonstrated by the observation that pharmacological restoration of AMPK activity not only abrogates the lipid accumulation observed in virus-infected and subgenomic replicon-harboring cells but also efficiently inhibits viral replication. These data demonstrate that inhibition of AMPK is required for HCV replication and that the restoration of AMPK activity may present a target for much needed anti-HCV therapies.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antiviral Agents/pharmacology , Genome, Viral , Hepacivirus/genetics , Hepatitis C/virology , Lipids/genetics , AMP-Activated Protein Kinases/antagonists & inhibitors , Genotype , Glucose/metabolism , Hepatitis C/metabolism , Humans , Microscopy, Confocal/methods , Models, Biological , Phosphorylation , Signal Transduction , Virus Replication
18.
Biomolecules ; 13(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36830577

ABSTRACT

BACKGROUND: Diarrhea is present in up to 30-50% of patients with COVID-19. The mechanism of SARS-CoV-2-induced diarrhea remains unclear. We hypothesized that enterocyte-enteric neuron interactions were important in SARS-CoV-2-induced diarrhea. SARS-CoV-2 induces endoplasmic reticulum (ER) stress in enterocytes causing the release of damage associated molecular patterns (DAMPs). The DAMPs then stimulate the release of enteric neurotransmitters that disrupt gut electrolyte homeostasis. METHODS: Primary mouse enteric neurons (EN) were exposed to a conditioned medium from ACE2-expressing Caco-2 colonic epithelial cells infected with SARS-CoV-2 or treated with tunicamycin (ER stress inducer). Vasoactive intestinal peptides (VIP) expression and secretion by EN were assessed by RT-PCR and ELISA, respectively. Membrane expression of NHE3 was determined by surface biotinylation. RESULTS: SARS-CoV-2 infection led to increased expression of BiP/GRP78, a marker and key regulator for ER stress in Caco-2 cells. Infected cells secreted the DAMP protein, heat shock protein 70 (HSP70), into the culture media, as revealed by proteomic and Western analyses. The expression of VIP mRNA in EN was up-regulated after treatment with a conditioned medium of SARS-CoV-2-infected Caco-2 cells. CD91, a receptor for HSP70, is abundantly expressed in the cultured mouse EN. Tunicamycin, an inducer of ER stress, also induced the release of HSP70 and Xbp1s, mimicking SARS-CoV-2 infection. Co-treatment of Caco-2 with tunicamycin (apical) and VIP (basolateral) induced a synergistic decrease in membrane expression of Na+/H+ exchanger (NHE3), an important transporter that mediates intestinal Na+/fluid absorption. CONCLUSIONS: Our findings demonstrate that SARS-CoV-2 enterocyte infection leads to ER stress and the release of DAMPs that up-regulates the expression and release of VIP by EN. VIP in turn inhibits fluid absorption through the downregulation of brush-border membrane expression of NHE3 in enterocytes. These data highlight the role of epithelial-enteric neuronal crosstalk in COVID-19-related diarrhea.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/metabolism , Sodium-Hydrogen Exchanger 3 , Tunicamycin , Caco-2 Cells , Culture Media, Conditioned , Proteomics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Diarrhea , Endoplasmic Reticulum Chaperone BiP , Neurons/metabolism
19.
Viruses ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37112961

ABSTRACT

Several direct-acting antivirals (DAAs) are available, providing interferon-free strategies for a hepatitis C cure. In contrast to DAAs, host-targeting agents (HTAs) interfere with host cellular factors that are essential in the viral replication cycle; as host genes, they are less likely to rapidly mutate under drug pressure, thus potentially exhibiting a high barrier to resistance, in addition to distinct mechanisms of action. We compared the effects of cyclosporin A (CsA), a HTA that targets cyclophilin A (CypA), to DAAs, including inhibitors of nonstructural protein 5A (NS5A), NS3/4A, and NS5B, in Huh7.5.1 cells. Our data show that CsA suppressed HCV infection as rapidly as the fastest-acting DAAs. CsA and inhibitors of NS5A and NS3/4A, but not of NS5B, suppressed the production and release of infectious HCV particles. Intriguingly, while CsA rapidly suppressed infectious extracellular virus levels, it had no significant effect on the intracellular infectious virus, suggesting that, unlike the DAAs tested here, it may block a post-assembly step in the viral replication cycle. Hence, our findings shed light on the biological processes involved in HCV replication and the role of CypA.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus/genetics , Antiviral Agents/therapeutic use , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Hepatitis C, Chronic/drug therapy , Viral Nonstructural Proteins/genetics , Hepatitis C/drug therapy
20.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36656782

ABSTRACT

The antiviral component of Paxlovid, nirmatrelvir (NIR), forms a covalent bond with Cys145 of SARS-CoV-2 nsp5. To explore NIR resistance we designed mutations to impair binding of NIR over substrate. Using 12 Omicron (BA.1) and WA.1 SARS-CoV-2 replicons, cell-based complementation and enzymatic assays, we showed that in both strains, E166V imparted high NIR resistance (∼55-fold), with major decrease in WA1 replicon fitness (∼20-fold), but not BA.1 (∼2-fold). WA1 replicon fitness was restored by L50F. These differences may contribute to a potentially lower barrier to resistance in Omicron than WA1. E166V is rare in untreated patients, albeit more prevalent in paxlovid-treated EPIC-HR clinical trial patients. Importantly, NIR-resistant replicons with E166V or E166V/L50F remained susceptible to a) the flexible GC376, and b) PF-00835231, which forms additional interactions. Molecular dynamics simulations show steric clashes between the rigid and bulky NIR t-butyl and ß-branched V166 distancing the NIR warhead from its Cys145 target. In contrast, GC376, through "wiggling and jiggling" accommodates V166 and still covalently binds Cys145. PF-00835231 uses its strategically positioned methoxy-indole to form a ß-sheet and overcome E166V. Drug design based on strategic flexibility and main chain-targeting may help develop second-generation nsp5-targeting antivirals efficient against NIR-resistant viruses.

SELECTION OF CITATIONS
SEARCH DETAIL