Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Inorg Chem ; 63(19): 8664-8673, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696593

ABSTRACT

C2 hydrocarbon separation from methane represents a technological challenge for natural gas upgrading. Herein, we report a new metal-organic framework, [Cu2L(DEF)2]·2DEF (UNT-14; H4L = 4,4',4″,4‴-((1E,1'E,1″E,1‴E)-benzene-1,2,4,5-tetrayltetrakis(ethene-2,1-diyl))tetrabenzoic acid; DEF = N,N-diethylformamide; UNT = University of North Texas). The linker design will potentially increase the surface area and adsorption energy owing to π(hydrocarbon)-π(linker)/M interactions, hence increasing C2 hydrocarbon/CH4 separation. Crystallographic data unravel an sql topology for UNT-14, whereby [Cu2(COO)4]···[L]4- paddle-wheel units afford two-dimensional porous sheets. Activated UNT-14a exhibits moderate porosity with an experimental Brunauer-Emmett-Teller (BET) surface area of 480 m2 g-1 (vs 1868 m2 g-1 from the crystallographic data). UNT-14a exhibits considerable C2 uptake capacity under ambient conditions vs CH4. GCMC simulations reveal higher isosteric heats of adsorption (Qst) and Henry's coefficients (KH) for UNT-14a vs related literature MOFs. Ideal adsorbed solution theory yields favorable adsorption selectivity of UNT-14a for equimolar C2Hn/CH4 gas mixtures, attaining 31.1, 11.9, and 14.8 for equimolar mixtures of C2H6/CH4, C2H4/CH4, and C2H2/CH4, respectively, manifesting efficient C2 hydrocarbon/CH4 separation. The highest C2 uptake and Qst being for ethane are also desirable technologically; it is attributed to the greatest number of "agostic" or other dispersion C-H bond interactions (6) vs 4/2/4 for ethylene/acetylene/methane.

2.
Angew Chem Int Ed Engl ; 54(16): 4842-6, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25735258

ABSTRACT

The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal-π interactions affords the supramolecular assemblies [1⋅PtOEP] or [1⋅H2OEP] (2 a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1⋅PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

3.
Inorg Chem ; 52(24): 14124-37, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24256298

ABSTRACT

A comparative study on the tendency of a new trinuclear silver(I) pyrazolate, namely, [N,N-(3,5-dinitropyrazolate)Ag]3 (1), and a similar compound known previously, [N,N-[3,5-bis(trifluoromethyl)pyrazolate]Ag]3 (2), to adsorb small volatile molecules was performed. It was found that 1 has a remarkable tendency to form adducts, at room temperature and atmospheric pressure, with acetone, acetylacetone, ammonia, pyridine, acetonitrile, triethylamine, dimethyl sulfide, and tetrahydrothiophene, while carbon monoxide, tetrahydrofuran, alcohols, and diethyl ether were not adsorbed. On the contrary, 2 did not undergo adsorption of any of the aforementioned volatile molecules. Adducts of 1 were characterized by elemental analysis, IR, thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area, and diffusion NMR measurements. The crystal structures of 1·2CH3CN and compound 3, derived from an attempt to crystallize the adduct of 1 with ammonia, were determined by single-crystal X-ray diffractometric studies. The former shows a sandwich structure with a 1:2 stoichiometric [Ag3]/[CH3CN] ratio in which one acetonitrile molecule points above and the other below the centroid of the Ag3N6 metallocycle. Compound 3 formed via rearrangement of the ammonia adduct to yield an anionic trinuclear silver(I) derivative with an additional bridging 3,5-dinitropyrazolate and having [Ag(NH3)2](+) as the counterion, [Ag(NH3)2][N,N-(3,5-dinitropyrazolate)4Ag3]. Irreversible sorption and/or decomposition upon vapor exposure are desirable advantages toward toxic gas filtration applications, including ammonia inhalation. TGA confirms the analytical data for all of the samples, showing weight loss for each adsorbed molecule at temperatures significantly higher than the corresponding boiling temperature, which suggests a chemical-bonding nature for adsorption as opposed to physisorption. BET surface measurements of the "naked" compound 1 excluded physical adsorption in its porous cavities. Density functional theory simulation results are also consistent with the chemisorption model, explain the experimental adsorption selectivity for 1, and attribute the lack of similar adsorption by 2 to significantly less polarizable electrostatic potential and also to strong argentophilic bonding whose energy is even higher than the quadrupole-dipole adduct bond energy upon proper selection of the density functional.

4.
Chem Sci ; 11(41): 11179-11188, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-34094358

ABSTRACT

An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(µ-Pz-(i-C3H7)2)]3·[Ag(µ-Tz-(n-C3F7)2)]3 (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction - representing the 1st crystallographically-verified stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M-M' (Au → Ag), metal-π, π-π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol-1 between the two trimer moieties - a large value for intermolecular interactions between adjacent d10 centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) - which becomes 87 kcal mol-1 with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M' frontier molecular orbitals in such polar-covalent M-M' bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H3N: → Ag in [Ag(NH3)2]+, as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand' (LL'CT) and metal-to-ligand (MLCT) charge transfer.

5.
J Phys Chem A ; 113(30): 8607-14, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19572689

ABSTRACT

The performance of 44 density functionals used in conjunction with the correlation consistent basis sets (cc-pVnZ where n = T and Q) has been assessed for the gas-phase enthalpies of formation at 298.15 K of 3d transition metal (TM) containing systems. Nineteen molecules were examined: ScS, VO, VO(2), Cr(CO)(6), MnS, MnCl(2), Mn(CO)(5)Cl, FeCl(3), Fe(CO)(5), CoH(CO)(4), NiCl(2), Ni(CO)(4), CuH, CuF, CuCl, ZnH, ZnO, ZnCl, and Zn(CH(3))(2). Of the functionals examined, the functionals that resulted in the smallest mean absolute deviation (MAD, in parentheses, kcal mol(-1)) from experiment were B97-1 (6.9), PBE1KCIS (8.1), TPSS1KCIS (9.6), B97-2 (9.7), and B98 (10.7). All five of these functionals include some degree of Hartree-Fock (HF) exchange. The impact of increasing the basis set from cc-pVTZ to cc-pVQZ was found to be slight for the generalized gradient approximation (GGA) and meta-GGA (MGGA) functionals studied, indicating basis set saturation at the triple-zeta level. By contrast, for most of the generalized gradient exchange (GGE), hybrid GGA (HGGA), and hybrid meta-GGA (HMGGA) functionals considered, improvements in the average MAD of 2-3 kcal mol(-1) were seen upon progressing to a quadruple-zeta level basis set. Overall, it was found that the functionals that include Hartree-Fock exchange performed best overall, but those with greater than 40% HF exchange exhibit significantly poor performance for the prediction of enthalpies of formation for 3d TM complexes. Carbonyl-containing complexes, a mainstay in organometallic TM chemistry, are demonstrated to be exceedingly difficult to describe accurately with all but 2 of the 44 functionals considered. The most accurate functional, for both CO-containing and CO-free compounds, is B97-1/cc-pVQZ, which is shown to be capable of yielding results within 1 kcal mol(-1) of high-level ab initio composite methodologies.

6.
J Am Chem Soc ; 130(5): 1669-75, 2008 Feb 06.
Article in English | MEDLINE | ID: mdl-18193869

ABSTRACT

Density functional theory (DFT) has been used to assess the pi-acidity and pi-basicity of metal-organic trimetallic macromolecular complexes of the type [M(mu-L)]3, where M = Cu, Ag, or Au and L = carbeniate, imidazolate, pyridiniate, pyrazolate, or triazolate. The organic compounds benzene, triazole, imidazole, pyrazole, and pyridine were also modeled, and their substituent effects were compared to those of the coinage metal trimers. Our results, based on molecular electrostatic potential surfaces and positive charge attraction energy curves, indicate that the metal-organic macromolecules show superior pi-acidity and -basicity compared to their organic counterparts. Moreover, the metal-organic cyclic trimers are found to exhibit pi-acidity and -basicity that can be systematically tuned both coarsely and finely by judicious variation of the bridging ligand (relative pi-basicity imidazolate > pyridiniate > carbeniate > pyrazolate > triazolate), metal (relative pi-basicity Au > Cu > Ag), and ligand substituents. These computational findings are thus guiding experimental efforts to rationally design novel [M(mu-L)]3 materials for applications in molecular electronic devices that include metal-organic field-effect transistors and light-emitting diodes.

7.
J Chem Theory Comput ; 5(11): 2959-66, 2009 Nov 10.
Article in English | MEDLINE | ID: mdl-26609977

ABSTRACT

The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bonds (the former of methane) have been studied using several levels of theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent Composite Approach). The results show no significant difference among the DFT methods. All three DFT methods predict the ground state of the copper-nitrene model complex, L'Cu(NH), to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state, resulting in a close energetic balance between the two states. A multireference ccCA method is applied to the nitrene active species and supports the assignment of a singlet ground state. In general, the largest difference in the model reaction cycles between DFT and ccCA methods is for processes involving radicals and bond dissociation.

SELECTION OF CITATIONS
SEARCH DETAIL