Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nucleic Acids Res ; 52(D1): D980-D989, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37956339

ABSTRACT

To fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.


Subject(s)
Databases, Genetic , Swine , Animals , Genome-Wide Association Study , Genotype , Multifactorial Inheritance , Phenotype , Swine/genetics , Multiomics
2.
BMC Genomics ; 25(1): 445, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711039

ABSTRACT

BACKGROUND: Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS: We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS: This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.


Subject(s)
Lactation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Lactation/genetics , Female , RNA Splicing , Genome-Wide Association Study , Gene Expression Profiling , Introns , Transcriptome
3.
Anim Genet ; 55(2): 265-276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185881

ABSTRACT

In livestock, genome-wide association studies (GWAS) are usually conducted in a single population (single-GWAS) with limited sample size and detection power. To enhance the detection power of GWAS, meta-analysis of GWAS (meta-GWAS) and mega-analysis of GWAS (mega-GWAS) have been proposed to integrate data from multiple populations at the level of summary statistics or individual data, respectively. However, there is a lack of comparison for these different strategies, which makes it difficult to guide the best practice of GWAS integrating data from multiple study populations. To maximize the comparison of different association analysis strategies across multiple populations, we conducted single-GWAS, meta-GWAS, and mega-GWAS for the backfat thickness of 100 kg (BFT_100) and days to 100 kg (DAYS_100) within each of the three commercial pig breeds (Duroc, Yorkshire, and Landrace). Based on controlling the genome inflation factor to one, we calculated corrected p-values (pC ). In Yorkshire, with the largest sample size, mega-GWAS, meta-GWAS and single-GWAS detected 149, 38 and 20 significant SNPs (pC < 1E-5) associated with BFT_100, as well as 26, four, and one QTL, respectively. Among them, pC of SNPs from mega-GWAS was the lowest, followed by meta-GWAS and single-GWAS. The correlation of pC among the three GWAS strategies ranged from 0.60 to 0.75 and the correlation of SNP effect values between meta-GWAS and mega-GWAS was 0.74, all showing good agreement. Collectively, even though there are differences in the integration of individual data or summary statistics, integrating data from multiple populations is an effective means of genetic argument for complex traits, especially mega-GWAS versus single-GWAS.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Swine , Animals , Polymorphism, Single Nucleotide , Multifactorial Inheritance , Phenotype
4.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891877

ABSTRACT

The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.


Subject(s)
Gene Flow , Animals , Asia, Southeastern , Swine/genetics , Databases, Genetic , Sus scrofa/genetics , Genetics, Population , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genotype , Breeding , Southeast Asian People
5.
Anim Genet ; 54(2): 113-122, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36461674

ABSTRACT

Breed identification utilizing multiple information sources and methods is widely applicated in the field of animal genetics and breeding. Simultaneously, with the development of artificial intelligence, the integration of high-throughput genomic data and machine learning techniques is increasingly used for breed identification. In this context, we used 654 individuals from 15 pig breeds, evaluating the performance of machine learning and stacking ensemble learning classifiers, as well as the function of feature selection and anomaly detection in different scenarios. Our results showed that, when using a training set of 16 individuals per breed and 32 features (SNPs), the accuracy of breed identification with feature selection (eXtreme Gradient Boosting, XGBoost) could exceed 95.00% (nine breeds), and was improved by 7.04% over the results with random selection. For stacking ensemble learning, feature selection methods (including random selection method) were used before different base learners. When these base learners' training set had 16 individuals per breed and 32 features, the accuracy of stacking ensemble learning improved by 9.24% over the best base learner (nine breeds), but did not significantly increase the advantage over the models with XGBoost feature selection. When using a training set of 16 individuals and 512 features per breed, breed identification with anomaly detection (local outlier factor, LOF) and random selection could achieve an accuracy of 89.06% (15 breeds). These results show that machine learning could be an effective tool for breed identification and this study will also provide useful information for the application of machine learning in animal genetics and breeding.


Subject(s)
Artificial Intelligence , Polymorphism, Single Nucleotide , Animals , Swine , Algorithms , Machine Learning , Genomics
6.
BMC Genomics ; 23(1): 786, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451102

ABSTRACT

BACKGROUND: Average backfat thickness (BFT) is a critical complex trait in pig and an important indicator for fat deposition and lean rate. Usually, genome-wide association study (GWAS) was used to discover quantitative trait loci (QTLs) of BFT in a single population. However, the power of GWAS is limited by sample size in a single population. Alternatively, meta-analysis of GWAS (metaGWAS) is an attractive method to increase the statistical power by integrating data from multiple breeds and populations. The aim of this study is to identify shared genetic characterization of BFT across breeds in pigs via metaGWAS.  RESULTS: In this study, we performed metaGWAS on BFT using 15,353 pigs (5,143 Duroc, 7,275 Yorkshire, and 2,935 Landrace) from 19 populations. We detected 40 genome-wide significant SNPs (Bonferroni corrected P < 0.05) and defined five breed-shared QTLs in across-breed metaGWAS. Markers within the five QTL regions explained 7 ~ 9% additive genetic variance and showed strong heritability enrichment. Furthermore, by integrating information from multiple bioinformatics databases, we annotated 46 candidate genes located in the five QTLs. Among them, three important (MC4R, PPARD, and SLC27A1) and seven suggestive candidate genes (PHLPP1, NUDT3, ILRUN, RELCH, KCNQ5, ITPR3, and U3) were identified. CONCLUSION: QTLs and candidate genes underlying BFT across breeds were identified via metaGWAS from multiple populations. Our findings contribute to the understanding of the genetic architecture of BFT and the regulating mechanism underlying fat deposition in pigs.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Swine/genetics , Animals , Phenotype , Adipose Tissue , CD36 Antigens
7.
Genet Sel Evol ; 54(1): 47, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761182

ABSTRACT

BACKGROUND: Compared to medium-density single nucleotide polymorphism (SNP) data, high-density SNP data contain abundant genetic variants and provide more information for the genetic evaluation of livestock, but it has been shown that they do not confer any advantage for genomic prediction and heritability estimation. One possible reason is the uneven distribution of the linkage disequilibrium (LD) along the genome, i.e., LD heterogeneity among regions. The aim of this study was to effectively use genome-wide SNP data for genomic prediction and heritability estimation by using models that control LD heterogeneity among regions. METHODS: The LD-adjusted kinship (LDAK) and LD-stratified multicomponent (LDS) models were used to control LD heterogeneity among regions and were compared with the classical model that has no such control. Simulated and real traits of 2000 dairy cattle individuals with imputed high-density (770K) SNP data were used. Five types of phenotypes were simulated, which were controlled by very strongly, strongly, moderately, weakly and very weakly tagged causal variants, respectively. The performances of the models with high- and medium-density (50K) panels were compared to verify that the models that controlled LD heterogeneity among regions were more effective with high-density data. RESULTS: Compared to the medium-density panel, the use of the high-density panel did not improve and even decreased prediction accuracies and heritability estimates from the classical model for both simulated and real traits. Compared to the classical model, LDS effectively improved the accuracy of genomic predictions and unbiasedness of heritability estimates, regardless of the genetic architecture of the trait. LDAK applies only to traits that are mainly controlled by weakly tagged causal variants, but is still less effective than LDS for this type of trait. Compared with the classical model, LDS improved prediction accuracy by about 13% for simulated phenotypes and by 0.3 to ~ 10.7% for real traits with the high-density panel, and by ~ 1% for simulated phenotypes and by - 0.1 to ~ 6.9% for real traits with the medium-density panel. CONCLUSIONS: Grouping SNPs based on regional LD to construct the LD-stratified multicomponent model can effectively eliminate the adverse effects of LD heterogeneity among regions, and greatly improve the efficiency of high-density SNP data for genomic prediction and heritability estimation.


Subject(s)
Genome , Genomics , Animals , Cattle/genetics , Genotype , Linkage Disequilibrium , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide
8.
J Dairy Sci ; 103(11): 10299-10310, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32952023

ABSTRACT

As genotypic data are moving from SNP chip toward whole-genome sequence, the accuracy of genomic prediction (GP) exhibits a marginal gain, although all genetic variation, including causal genes, are contained in whole-genome sequence data. Meanwhile, genetic analyses on complex traits, such as genome-wide association studies, have identified an increasing number of genomic regions, including potential causal genes, which would be reliable prior knowledge for GP. Many studies have tried to improve the performance of GP by modifying the prediction model to incorporate prior knowledge. Although several plausible results have been obtained from model modification or strategy optimization, most of them were validated in a specific empirical population with a limited variety of genetic architecture for complex traits. An alternative approach is to use simulated genetic architecture with known causal genes (e.g., simulated causative SNP) to evaluate different GP models with given causal genes. Our objectives were to (1) evaluate the performance of GP under a variety of genetic architectures with a subset of known causal genes and (2) compare different GP models modified by highlighting causal genes and different strategies to weight causal genes. In this study, we simulated pseudo-phenotypes under a variety of genetic architectures based on the real genotypes and phenotypes of a dairy cattle population. Besides classical genomic best linear unbiased prediction, we evaluated 3 modified GP models that highlight causal genes as follows: (1) by treating them as fixed effects, (2) by treating them as a separate random component, and (3) by combining them into the genomic relationship matrix as random effects. Our results showed that highlighting the known causal genes, which explained a considerable proportion of genetic variance in the GP models, increased the predictive accuracy. Combining all given causal genes into the genomic relationship matrix was the optimal strategy under all the scenarios validated, and treating causal genes as a separate random component is also recommended, when more than 20% of genetic variance was explained by known causal genes. Moreover, assigning differential weights to each causal gene further improved the predictive accuracy.


Subject(s)
Cattle/genetics , Genome/genetics , Genomics , Multifactorial Inheritance/genetics , Animals , Female , Genome-Wide Association Study/veterinary , Genotype , Models, Genetic , Phenotype , Whole Genome Sequencing/veterinary
9.
Genome Biol ; 25(1): 116, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715020

ABSTRACT

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Subject(s)
Genome , Genomic Structural Variation , Animals , Sus scrofa/genetics , Polymorphism, Single Nucleotide , Swine/genetics , Chromosome Mapping
10.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177344

ABSTRACT

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Swine/genetics , Animals , Humans , Genotype , Phenotype , Sequence Analysis, RNA
11.
Cell Genom ; 3(10): 100390, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868039

ABSTRACT

Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.

12.
Genes (Basel) ; 13(5)2022 04 20.
Article in English | MEDLINE | ID: mdl-35627107

ABSTRACT

Multiple environment phenotypes may be utilized to implement genomic prediction in plant breeding, while it is unclear about optimal utilization strategies according to its different availability. It is necessary to assess the utilization strategies of genomic prediction models based on different availability of multiple environment phenotypes. Here, we compared the prediction accuracy of three genomic prediction models (genomic prediction model (genomic best linear unbiased prediction (GBLUP), genomic best linear unbiased prediction (GFBLUP), and multi-trait genomic best linear unbiased prediction (mtGBLUP)) which leveraged diverse information from multiple environment phenotypes using a rice dataset containing 19 agronomic traits in two disparate seasons. We found that the prediction accuracy of genomic prediction models considering multiple environment phenotypes (GFBLUP and mtGBLUP) was better than the classical genomic prediction model (GBLUP model). The deviation of prediction accuracy of between GBLUP and mtGBLUP or GFBLUP was associated with the phenotypic correlation. In summary, the genomic prediction models considering multiple environment phenotypes (GFBLUP and mtGBLUP) demonstrated better prediction accuracy. In addition, we could utilize different genomic prediction strategies according to different availability of multiple environment phenotypes.


Subject(s)
Models, Genetic , Plant Breeding , Genomics , Linear Models , Phenotype
13.
Genes (Basel) ; 13(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36140810

ABSTRACT

Heritability enrichment analysis is an important means of exploring the genetic architecture of complex traits in human genetics. Heritability enrichment is typically defined as the proportion of an SNP subset explained heritability, divided by the proportion of SNPs. Heritability enrichment enables better study of underlying complex traits, such as functional variant/gene subsets, biological networks and metabolic pathways detected through integrating explosively increased omics data. This would be beneficial for genomic prediction of disease risk in humans and genetic values estimation of important economical traits in livestock and plant species. However, in livestock, factors affecting the heritability enrichment estimation of complex traits have not been examined. Previous studies on humans reported that the frequencies, effect sizes, and levels of linkage disequilibrium (LD) of underlying causal variants (CVs) would affect the heritability enrichment estimation. Therefore, the distribution of heritability across the genome should be fully considered to obtain the unbiased estimation of heritability enrichment. To explore the performance of different heritability enrichment models in livestock populations, we used the VanRaden, GCTA and α models, assuming different α values, and the LDAK model, considering LD weight. We simulated three types of phenotypes, with CVs from various minor allele frequency (MAF) ranges: genome-wide (0.005 ≤ MAF ≤ 0.5), common (0.05 ≤ MAF ≤ 0.5), and uncommon (0.01 ≤ MAF < 0.05). The performances of the models with two different subsets (one of which contained known CVs and the other consisting of randomly selected markers) were compared to verify the accuracy of heritability enrichment estimation of functional variant sets. Our results showed that models with known CV subsets provided more robust enrichment estimation. Models with different α values tended to provide stable and accurate estimates for common and genome-wide CVs (relative deviation 0.5−2.2%), while tending to underestimate the enrichment of uncommon CVs. As the α value increased, enrichments from 15.73% higher than true value (i.e., 3.00) to 48.93% lower than true value for uncommon CVs were observed. In addition, the long-range LD windows (e.g., 5000 kb) led to large bias of the enrichment estimations for both common and uncommon CVs. Overall, heritability enrichment estimations were sensitive for the α value assumption and LD weight consideration of different models. Accuracy would be greatly improved by using a suitable model. This study would be helpful in understanding the genetic architecture of complex traits and provides a reference for genetic analysis in the livestock population.


Subject(s)
Livestock , Models, Genetic , Animals , Gene Frequency , Humans , Linkage Disequilibrium , Livestock/genetics , Multifactorial Inheritance
14.
J Anim Sci Biotechnol ; 13(1): 99, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36127741

ABSTRACT

BACKGROUND: As one of the most utilized commercial composite boar lines, Duroc pigs have been introduced to China and undergone strongly human-induced selection over the past decades. However, the efficiencies and limitations of previous breeding of Chinese Duroc pigs are largely understudied. The objective of this study was to uncover directional polygenic selection in the Duroc pig genome, and investigate points overlooked in the past breeding process. RESULTS: Here, we utilized the Generation Proxy Selection Mapping (GPSM) on a dataset of 1067 Duroc pigs with 8,766,074 imputed SNPs. GPSM detected a total of 5649 putative SNPs actively under selection in the Chinese Duroc pig population, and the potential functions of the selection regions were mainly related to production, meat and carcass traits. Meanwhile, we observed that the allele frequency of variants related to teat number (NT) relevant traits was also changed, which might be influenced by genes that had pleiotropic effects. First, we identified the direction of selection on NT traits by [Formula: see text], and further pinpointed large-effect genomic regions associated with NT relevant traits by selection signature and GWAS. Combining results of NT relevant traits-specific selection signatures and GWAS, we found three common genome regions, which were overlapped with QTLs related to production, meat and carcass traits besides "teat number" QTLs. This implied that there were some pleiotropic variants underlying NT and economic traits. We further found that rs346331089 has pleiotropic effects on NT and economic traits, e.g., litter size at weaning (LSW), litter weight at weaning (LWW), days to 100 kg (D100), backfat thickness at 100 kg (B100), and loin muscle area at 100 kg (L100) traits. CONCLUSIONS: The selected loci that we identified across methods displayed the past breeding process of Chinese Duroc pigs, and our findings could be used to inform future breeding decision.

15.
Animals (Basel) ; 11(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34359120

ABSTRACT

With the availability of high-density single-nucleotide polymorphism (SNP) data and the development of genotype imputation methods, high-density panel-based genomic prediction (GP) has become possible in livestock breeding. It is generally considered that the genomic estimated breeding value (GEBV) accuracy increases with the marker density, while studies have shown that the GEBV accuracy does not increase or even decrease when high-density panels were used. Therefore, in addition to the SNP number, other measurements of 'marker density' seem to have impacts on the GEBV accuracy, and exploring the relationship between the GEBV accuracy and the measurements of 'marker density' based on high-density SNP or whole-genome sequence data is important for the field of GP. In this study, we constructed different SNP panels with certain SNP numbers (e.g., 1 k) by using the physical distance (PhyD), genetic distance (GenD) and random distance (RanD) between SNPs respectively based on the high-density SNP data of a Germany Holstein dairy cattle population. Therefore, there are three different panels at a certain SNP number level. These panels were used to construct GP models to predict fat percentage, milk yield and somatic cell score. Meanwhile, the mean (d¯) and variance (σd2) of the physical distance between SNPs and the mean (r2¯) and variance (σr22) of the genetic distance between SNPs in each panel were used as marker density-related measurements and their influence on the GEBV accuracy was investigated. At the same SNP number level, the d¯ of all panels is basically the same, but the σd2, r2¯ and σr22 are different. Therefore, we only investigated the effects of σd2, r2¯ and σr22 on the GEBV accuracy. The results showed that at a certain SNP number level, the GEBV accuracy was negatively correlated with σd2, but not with r2¯ and σr22. Compared with GenD and RanD, the σd2 of panels constructed by PhyD is smaller. The low and moderate-density panels (< 50 k) constructed by RanD or GenD have large σd2, which is not conducive to genomic prediction. The GEBV accuracy of the low and moderate-density panels constructed by PhyD is 3.8~34.8% higher than that of the low and moderate-density panels constructed by RanD and GenD. Panels with 20-30 k SNPs constructed by PhyD can achieve the same or slightly higher GEBV accuracy than that of high-density SNP panels for all three traits. In summary, the smaller the variation degree of physical distance between adjacent SNPs, the higher the GEBV accuracy. The low and moderate-density panels construct by physical distance are beneficial to genomic prediction, while pruning high-density SNP data based on genetic distance is detrimental to genomic prediction. The results provide suggestions for the development of SNP panels and the research of genome prediction based on whole-genome sequence data.

16.
Front Genet ; 11: 243, 2020.
Article in English | MEDLINE | ID: mdl-32318090

ABSTRACT

Poultry feed constitutes the largest cost in poultry production, estimated to be up to 70% of the total cost. Moreover, there is pressure on the poultry industry to increase production to meet the protein demand of humans and simultaneously reduce emissions to protect the environment. Therefore, improving feed efficiency plays an important role to improve profits and the environmental footprint in broiler production. In this study, using imputed whole-genome sequencing data, genome-wide association analysis (GWAS) was performed to identify single-nucleotide polymorphisms (SNPs) and genes associated with residual feed intake (RFI) and its component traits. Furthermore, a transcriptomic analysis between the high-RFI and the low-RFI groups was performed to validate the candidate genes from GWAS. The results showed that the heritability estimates of average daily gain (ADG), average daily feed intake (ADFI), and RFI were 0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Using imputed sequence-based GWAS, we identified seven significant SNPs and five candidate genes [MTSS I-BAR domain containing 1, folliculin, COP9 signalosome subunit 3, 5',3'-nucleotidase (mitochondrial), and gametocyte-specific factor 1] associated with RFI, 20 significant SNPs and one candidate gene (inositol polyphosphate multikinase) associated with ADG, and one significant SNP and one candidate gene (coatomer protein complex subunit alpha) associated with ADFI. After performing a transcriptomic analysis between the high-RFI and the low-RFI groups, both 38 up-regulated and 26 down-regulated genes were identified in the high-RFI group. Furthermore, integrating regional conditional GWAS and transcriptome analysis, ras-related dexamethasone induced 1 was the only overlapped gene associated with RFI, which also suggested that the region (GGA14: 4767015-4882318) is a new quantitative trait locus associated with RFI. In conclusion, using imputed sequence-based GWAS is an efficient method to identify significant SNPs and candidate genes in chicken. Our results provide valuable insights into the genetic mechanisms of RFI and its component traits, which would further improve the genetic gain of feed efficiency rapidly and cost-effectively in the context of marker-assisted breeding selection.

17.
Zhongguo Zhen Jiu ; 40(10): 1027-33, 2020 Oct 12.
Article in Zh | MEDLINE | ID: mdl-33068341

ABSTRACT

OBJECTIVE: To establish and promote the non-contact doctor-patient interactive diagnosis and treatment mode based on mobile internet for the treatment of coronavirus disease 2019 (COVID-19) with moxibustion therapy, and to observe the feasibility and effectiveness of the model in the pandemic. METHODS: A total of 43 first-line medical staff and 149 suspected and confirmed cases with COVID-19 [18 cases in medical observation period, 17 cases of mild type (cold dampness and stagnation in the lung), 24 cases of ordinary type (cold-dampness accumulated in the lung) and 90 cases in recovery period (qi deficiency of spleen and lung)] were included. A non-contact doctor-patient interactive diagnosis and treatment platform was established for the treatment of COVID-19 with indirect moxibustion plaster based on mobile internet. By the platform, the patients were instructed to use indirect moxibustion plaster in treatment. For the first-line medical staff and patients in the medical observation period, Zusanli (ST 36), Qihai (CV 6) and Zhongwan (CV 12) were selected. For the mild cases (cold dampness and stagnation in the lung) and the cases of ordinary type (cold-dampness accumulated in the lung), Hegu (LI 4), Taichong (LR 3), Zusanli (ST 36) and Guanyuan (CV 4) were selected. In the recovery period (qi deficiency of spleen and lung), Dazhui (GV 14), Feishu (BL 13), Geshu (BL 17), Zusanli (ST 36) and Kongzui (LU 6) were used. The treatment was given once daily for 40 min each time. The intervention lasted for 10 days. After intervention, the infection rate and the improvement in the symptoms and psychological status of COVID-19 were observed in clinical first-line medical staff and COVID-19 patients. RESULTS: In 10 days of intervention with indirect moxibustion plaster, there was "zero" infection among medical staff. Of 43 first-line physicians and nurses, 33 cases had some physical symptoms and psychological discomforts, mainly as low back pain, poor sleep and anxiety. After treatment, regarding the improvements in the symptoms and psychological discomforts, the effective rate was 78.8% (26/33) and the curative rate was 36.4% (12/33). Regarding the improvements in psychological discomforts, the effective rate was 58.3% (14/24) and the curative rate was 37.5 (9/24). Of 149 patients, 133 cases had the symptoms and psychological discomforts. After treatment, regarding the improvements in the symptoms and psychological discomforts, the effective rate was 81.2% (108/133) and the curative rate was 34.6% (46/133). Regarding the improvements in psychological discomforts, the effective rate was 76.5% (52/68) and the curative rate was 57.4 % (39/68). CONCLUSION: It is feasible to apply the indirect moxibustion plaster technique based on mobile internet to the treatment COVID-19. This mode not only relieves the symptoms such as cough and fatigue, improves psychological state, but also possibly prevents the first-line medical staff from COVID-19.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Moxibustion , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Remote Consultation , Acupuncture Points , Betacoronavirus , COVID-19 , Health Personnel , Humans , SARS-CoV-2
18.
Theriogenology ; 139: 36-42, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31362194

ABSTRACT

Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. As an important litter size trait in pigs, the number of piglets born alive at birth (NBA) receives widespread interests in the pig industry. However, traits of piglets born dead, including the number of stillborn piglets (NS) and the piglets mummified at birth (NM) should be noted to explain the loss of reproduction. Herein, in the present study, a total of 803 producing sows were sampled and 2807 farrowing records for NBA, NM, and NS traits were collected in a Duroc swine population. Subsequently, a genome-wide association study (GWAS) was performed for NBA, NS and NM in parity groups 1 to 5. In total, 10 putative regions were found associated with these traits. After stepwise conditional analyses around the putative regions, eight independent signals were ultimately identified for NBA, NS, and NM, and there were seven promising candidate genes related to these traits, including ARID1A, RXRG, NFATC4, ABTB2, GRAMD1B, NDRG1, and APC. Our findings contribute to the understanding of the significant genetic causes of piglets born alive and dead, and could have a positive effect on pig production efficiency and economic profits.


Subject(s)
Live Birth/veterinary , Stillbirth/veterinary , Swine/genetics , Animals , Genome , Genome-Wide Association Study , Litter Size/genetics , Live Birth/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Stillbirth/genetics , Swine/physiology
19.
Genes (Basel) ; 10(5)2019 05 07.
Article in English | MEDLINE | ID: mdl-31067806

ABSTRACT

South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding'an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis-ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.


Subject(s)
Swine/genetics , Animals , China , Female , Male , Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Selection, Genetic , Species Specificity
20.
Poult Sci ; 98(5): 1968-1975, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30668806

ABSTRACT

In the past decades, crossbreeding has been widely used to improve productivity in plant and animal husbandry. With the rapid implementation of genomic selection (GS) in these industries and a decrease in the cost of genotyping, genomic prediction (GP) with data from crossbred populations is an emerging research interest. Using a crossbred population derived from a cross between White Recessive Rock (WRR) and Xinghua (XH) chickens (n = 473), the predictive ability and selection differential of conventional best linear unbiased prediction (BLUP) and 3 GP methods (GBLUP, RKHS, and BayesB) were compared. All chickens were genotyped by a 60 K SNP chip. Twenty traits containing body weight (BW) at 1 to 90 d of age, breast muscle weight (BMW), leg muscle weight (LMW), wing weight (WW), and average daily gain (ADG) of different periods were analyzed. The accuracy of GP was higher than that of conventional BLUP for 18 out of 20 investigated traits. The average selection differential on BW selected with GP methods was greater than that from conventional BLUP, with a proportion selected varied between 5 and 30%. Overall, the GP methods outperformed conventional BLUP for both predictive ability and selection effect in the tested crossbred chicken population. Using genomic data from crossbred populations could potentially benefit the decision making for the purpose of marketing or breeding within crossbred population.


Subject(s)
Breeding/methods , Chickens/growth & development , Chickens/genetics , Genome , Animals , China , Female , Hybridization, Genetic , Male
SELECTION OF CITATIONS
SEARCH DETAIL