Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38531627

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Subject(s)
Ellis-Van Creveld Syndrome , Pedigree , Phenotype , Humans , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Male , Female , Child , Membrane Proteins/genetics , Mutation , Child, Preschool , Zinc Finger Protein Gli3/genetics , Adolescent , Adult , Nerve Tissue Proteins/genetics , Cohort Studies , Infant , Proteins/genetics , Retrospective Studies , Intercellular Signaling Peptides and Proteins
2.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33058759

ABSTRACT

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Subject(s)
Abnormalities, Multiple/genetics , Cognitive Dysfunction/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Fingers/abnormalities , Germ-Line Mutation , Heart Septal Defects/genetics , Polydactyly/genetics , Toes/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Adolescent , Adult , Animals , Base Sequence , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/deficiency , Female , Fingers/pathology , Gene Expression Regulation, Developmental , Heart Septal Defects/diagnosis , Heart Septal Defects/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Holoenzymes/chemistry , Holoenzymes/deficiency , Holoenzymes/genetics , Humans , Infant, Newborn , Male , Mice , Models, Molecular , Mosaicism , NIH 3T3 Cells , Pedigree , Polydactyly/diagnosis , Polydactyly/pathology , Protein Structure, Secondary , Toes/pathology
3.
Am J Med Genet A ; 191(1): 253-258, 2023 01.
Article in English | MEDLINE | ID: mdl-36286624

ABSTRACT

Keratitis-ichthyosis-deafness (KID) syndrome is a rare genetic disease caused by pathogenic variants in connexin 26 (gene GJB2), which is part of the transmembrane channels of the epithelia. Connexin 26 is expressed mainly in the cornea, the sensory epithelium of the inner ear, and in the skin keratinocytes, which are the three main target organs in KID syndrome. Approximately a dozen pathogenic variants have been described to date, including some lethal forms. Patients with lethal pathogenic variants present with severe symptoms from birth and die from sepsis during the first year of life. We present a premature female patient with KID syndrome carrying the lethal p.Ala88Val pathogenic variant in GJB2. In addition to the respiratory distress associated with this variant, our patient presented severe hypercalcemia of unexplained origin refractory to treatment. This abnormality has not been reported earlier in other patients with KID syndrome with the same variant.


Subject(s)
Connexins , Deafness , Humans , Female , Connexin 26/genetics , Connexins/genetics , Mutation , Syndrome , Deafness/diagnosis , Deafness/genetics , Deafness/pathology
4.
J Med Genet ; 59(3): 253-261, 2022 03.
Article in English | MEDLINE | ID: mdl-33579810

ABSTRACT

INTRODUCTION: Kagami-Ogata syndrome (KOS14) and Temple syndrome (TS14) are two disorders associated with reciprocal alterations within the chr14q32 imprinted domain. Here, we present a work-up strategy for preimplantation genetic testing (PGT) to avoid the transmission of a causative micro-deletion. METHODS: We analysed DNA from the KOS14 index case and parents using methylation-sensitive ligation-mediated probe amplification and methylation pyrosequencing. The extent of the deletion was mapped using SNP arrays. PGT was performed in trophectoderm samples in order to identify unaffected embryos. Samples were amplified using multiple displacement amplification, followed by genome-wide SNP genotyping to determine the at-risk haplotype and next-generation sequencing to determine aneuploidies. RESULTS: A fully methylated pattern at the normally paternally methylated IG-DMR and MEG3 DMR in the KOS14 proband, accompanied by an unmethylated profile in the TS14 mother was consistent with maternal and paternal transmission of a deletion, respectively. Further analysis revealed a 108 kb deletion in both cases. The inheritance of the deletion on different parental alleles was consistent with the opposing phenotypes. In vitro fertilisation with intracytoplasmatic sperm injection and PGT were used to screen for deletion status and to transfer an unaffected embryo in this couple. A single euploid-unaffected embryo was identified resulting in a healthy baby born. DISCUSSION: We identify a microdeletion responsible for multigeneration KOS14 and TS14 within a single family where carriers have a 50% risk of transmitting the deletion to their offspring. We show that PGT can successfully be offered to couples with IDs caused by genetic anomalies.


Subject(s)
Abnormalities, Multiple , Preimplantation Diagnosis , Abnormalities, Multiple/genetics , Aneuploidy , Chromosomes, Human, Pair 14 , Female , Genetic Testing/methods , Humans , Pregnancy , Uniparental Disomy
5.
Nucleic Acids Res ; 48(20): 11394-11407, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33053156

ABSTRACT

Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation that is resistant to embryonic reprogramming, resulting in parental origin-specific monoallelic gene expression. A subset of individuals affected by imprinting disorders (IDs) displays multi-locus imprinting disturbances (MLID), which may result from aberrant establishment of imprinted differentially methylated regions (DMRs) in gametes or their maintenance in early embryogenesis. Here we investigated the extent of MLID in a family harbouring a ZFP57 truncating variant and characterize the interactions between human ZFP57 and the KAP1 co-repressor complex. By ectopically targeting ZFP57 to reprogrammed loci in mouse embryos using a dCas9 approach, we confirm that ZFP57 recruitment is sufficient to protect oocyte-derived methylation from reprogramming. Expression profiling in human pre-implantation embryos and oocytes reveals that unlike in mice, ZFP57 is only expressed following embryonic-genome activation, implying that other KRAB-zinc finger proteins (KZNFs) recruit KAP1 prior to blastocyst formation. Furthermore, we uncover ZNF202 and ZNF445 as additional KZNFs likely to recruit KAP1 to imprinted loci during reprogramming in the absence of ZFP57. Together, these data confirm the perplexing link between KZFPs and imprint maintenance and highlight the differences between mouse and humans in this respect.


Subject(s)
DNA Methylation , Embryo, Mammalian/metabolism , Genomic Imprinting , Germ Cells/metabolism , Oocytes/metabolism , Repressor Proteins/metabolism , Beckwith-Wiedemann Syndrome/metabolism , Cohort Studies , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Humans , Microarray Analysis , Mutation , Pedigree , Pseudohypoparathyroidism/metabolism , RNA-Seq , Repressor Proteins/genetics , Siblings , Transcriptome , Tripartite Motif-Containing Protein 28
6.
Clin Genet ; 99(6): 812-817, 2021 06.
Article in English | MEDLINE | ID: mdl-33527360

ABSTRACT

Missense and frameshift pathogenic variants and microdeletions involving TBL1XR1 gene have been described in patients with intellectual disability, autism, Rett-like features and schizophrenia, some of them with the clinical diagnosis of Pierpont syndrome, a rare pattern of multiple congenital anomalies, but others without dysmorphic findings or with non-specific ones, and also patients with only some of the features associated with Pierpont syndrome. We here present a case with a de novo novel missense variant in TBL1XR1 gene with overlapping features with Pierpont syndrome and autism, a neurobehavioral manifestation not previously reported in Pierpont syndrome. This patient expands the phenotypic spectrum of TBL1XR1 gene pathogenic variants.


Subject(s)
Autistic Disorder/genetics , Intellectual Disability/genetics , Mutation, Missense/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Child, Preschool , Humans , Male , Phenotype
7.
Hum Mutat ; 41(1): 265-276, 2020 01.
Article in English | MEDLINE | ID: mdl-31549748

ABSTRACT

Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.


Subject(s)
Fingers/abnormalities , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Polydactyly/diagnosis , Polydactyly/genetics , Toes/abnormalities , Zinc Finger Protein GLI1/genetics , Alleles , Amino Acid Substitution , Female , Fibroblasts , Gene Expression , Genes, Dominant , Genes, Reporter , Genetic Association Studies/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
8.
Genet Med ; 22(11): 1743-1757, 2020 11.
Article in English | MEDLINE | ID: mdl-32661356

ABSTRACT

Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy-number variants, small or single-nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.


Subject(s)
DNA Copy Number Variations , Mosaicism , DNA Mutational Analysis , Humans , Mutation , Software
9.
Clin Genet ; 97(3): 467-476, 2020 03.
Article in English | MEDLINE | ID: mdl-31972898

ABSTRACT

The proximal 19p13.3 microdeletion/microduplication (prox19p13.3del/dup) syndrome is a recently described disorder with common clinical features including developmental delay, intellectual disability, speech delay, facial dysmorphic features with ear defects, anomalies of the hands and feet, umbilical hernia and hypotonia. While deletions are associated with macrocephaly, patients with duplications have microcephaly. The smallest region of overlap in multiple patients (113.5 kb) included three genes and one pseudogene, with a suggested major role of PIAS4 in determination of the phenotype and head size in these patients. Here, we refine the prox19p13.3del/dup with four additional patients: two with microdeletions, one with microduplication and one family with single-nucleotide nonsense variant in PIAS4. The patient with the PIAS4 loss of function variant displayed a phenotype quite similar to deletion patients -including the macrocephaly and many other core features of the syndrome. Patient's SNV was inherited from her mother who is similarly affected. Thus, our data indicate that PIAS4 is a major contributor to the proximal 19p13.3del/dup syndrome phenotype. In summary, we report the first patient with a pathogenic variant in PIAS4- and three additional rearrangements at the proximal 19p13.3 locus. These observations add further evidence about the molecular basis of this microdeletion/microduplication syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Protein Inhibitors of Activated STAT/genetics , Abnormalities, Multiple/pathology , Child , Chromosome Deletion , Chromosome Duplication/genetics , Chromosomes, Human, Pair 19/genetics , Comparative Genomic Hybridization , Developmental Disabilities/pathology , Female , Humans , Intellectual Disability/pathology , Male , Megalencephaly/genetics , Megalencephaly/pathology , Microcephaly/pathology , Phenotype
10.
Clin Genet ; 95(6): 726-731, 2019 06.
Article in English | MEDLINE | ID: mdl-30628072

ABSTRACT

Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that either the weight, height, or head circumference are above the 97th centile or 2 to 3 SD above the mean for age and sex. Additional features, such as facial dysmorphism, developmental delay or intellectual disability (ID), congenital anomalies, neurological problems and an increased risk of neoplasia are usually associated with OGS. Genetic analysis in patients with overlapping clinical features is essential, to distinguish between two or more similar conditions, and to provide appropriate genetic counseling and recommendations for follow up. In the present paper, we report five new patients (from four unrelated families) with an X-linked mental retardation syndrome with overgrowth (XMR93 syndrome), also known as XLID-BRWD3-related syndrome. The main features of these patients include ID, macrocephaly and dysmorphic facial features. XMR93 syndrome is a recently described disorder caused by mutations in the Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) gene. This article underscores the importance of genetic screening by exome sequencing for patients with OGS and ID with unclear clinical diagnosis, and expands the number of reported individuals with XMR93 syndrome, highlighting the clinical features of this unusual disease.


Subject(s)
Megalencephaly/genetics , Mental Retardation, X-Linked/genetics , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Developmental Disabilities , Humans , Male , Megalencephaly/metabolism , Megalencephaly/physiopathology , Mental Retardation, X-Linked/physiopathology , Mutation , Pedigree , Registries , Transcription Factors/metabolism , Exome Sequencing
11.
Hum Mutat ; 39(9): 1226-1237, 2018 09.
Article in English | MEDLINE | ID: mdl-29897170

ABSTRACT

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , NFI Transcription Factors/genetics , Sotos Syndrome/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/physiopathology , Child , Child, Preschool , Chromosome Deletion , Congenital Hypothyroidism/physiopathology , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Exons/genetics , Female , Hand Deformities, Congenital/physiopathology , Humans , Intellectual Disability/physiopathology , Male , Megalencephaly/genetics , Megalencephaly/physiopathology , Mutation, Missense/genetics , Phenotype , Septo-Optic Dysplasia/genetics , Septo-Optic Dysplasia/physiopathology , Sotos Syndrome/physiopathology , Young Adult
12.
Am J Med Genet A ; 173(3): 601-610, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28127875

ABSTRACT

Hypophosphatasia (HPP) is a rare autosomal dominant or recessive metabolic disorder caused by mutations in the tissue nonspecific alkaline phosphatase gene (ALPL). To date, over 300 different mutations in ALPL have been identified. Disease severity is widely variable with severe forms usually manifesting during perinatal and/or infantile periods while mild forms are sometimes only diagnosed in adulthood or remain undiagnosed. Common clinical features of HPP are defects in bone and tooth mineralization along with the biochemical hallmark of decreased serum alkaline phosphatase activity. The incidence of severe HPP is approximately 1 in 300,000 in Europe and 1 in 100,000 in Canada. We present the clinical and molecular findings of 83 probands and 28 family members, referred for genetic analysis due to a clinical and biochemical suspicion of HPP. Patient referrals included those with isolated low alkaline phosphatase levels and without any additional clinical features, to those with a severe skeletal dysplasia. Thirty-six (43.3%) probands were found to have pathogenic ALPL mutations. Eleven previously unreported mutations were identified, thus adding to the ever increasing list of ALPL mutations. Seven of these eleven were inherited in an autosomal dominant manner while the remaining four were observed in the homozygous state. Thus, this study includes a large number of well-characterized patients with hypophosphatasemia which has permitted us to study the genotype:phenotype correlation. Accurate diagnosis of patients with a clinical suspicion of HPP is crucial as not only is the disease life-threatening but the patients may be offered bone targeted enzymatic replacement therapy. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alkaline Phosphatase/genetics , Genetic Association Studies , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Phenotype , Adolescent , Adult , Alleles , Amino Acid Substitution , DNA Mutational Analysis , Exons , Female , Genetic Testing , Genotype , Humans , Inheritance Patterns , Male , Middle Aged , Mutation , Severity of Illness Index , Young Adult
14.
Am J Med Genet A ; 170(10): 2740-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27480579

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by an excessive prenatal and postnatal growth, macrosomia, macroglossia, and hemihyperplasia. The molecular basis of this syndrome is complex and heterogeneous, involving genes located at 11p15.5. BWS is correlated with assisted reproductive techniques. BWS in individuals born following assisted reproductive techniques has been found to occur four to nine times higher compared to children with to BWS born after spontaneous conception. Here, we report a series of 187 patients with to BWS born either after assisted reproductive techniques or conceived naturally. Eighty-eight percent of BWS patients born via assisted reproductive techniques had hypomethylation of KCNQ1OT1:TSS-DMR in comparison with 49% for patients with BWS conceived naturally. None of the patients with BWS born via assisted reproductive techniques had hypermethylation of H19/IGF2:IG-DMR, neither CDKN1 C mutations nor patUPD11. We did not find differences in the frequency of multi-locus imprinting disturbances between groups. Patients with BWS born via assisted reproductive techniques had an increased frequency of advanced bone age, congenital heart disease, and decreased frequency of earlobe anomalies but these differences may be explained by the different molecular background compared to those with BWS and spontaneous fertilization. We conclude there is a correlation of the molecular etiology of BWS with the type of conception. © 2016 Wiley Periodicals, Inc.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Genetic Association Studies , Centromere , Chromosomes, Human, Pair 11 , DNA Methylation , Epigenesis, Genetic , Female , Fertilization , Genomic Imprinting , Humans , Infant, Newborn , Male , Phenotype , Registries , Reproductive Techniques, Assisted , Spain , Telomere
15.
Hum Mutat ; 35(12): 1436-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25196541

ABSTRACT

Overgrowth syndromes (OGS) are a group of disorders in which all parameters of growth and physical development are above the mean for age and sex. We evaluated a series of 270 families from the Spanish Overgrowth Syndrome Registry with no known OGS. We identified one de novo deletion and three missense mutations in RNF125 in six patients from four families with overgrowth, macrocephaly, intellectual disability, mild hydrocephaly, hypoglycemia, and inflammatory diseases resembling Sjögren syndrome. RNF125 encodes an E3 ubiquitin ligase and is a novel gene of OGS. Our studies of the RNF125 pathway point to upregulation of RIG-I-IPS1-MDA5 and/or disruption of the PI3K-AKT and interferon signaling pathways as the putative final effectors.


Subject(s)
Growth Disorders/genetics , Mutation , Ubiquitin-Protein Ligases/genetics , Female , Growth Disorders/epidemiology , Humans , Male , Pedigree , Registries , Spain/epidemiology , Syndrome
16.
Thyroid ; 34(7): 942-948, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757609

ABSTRACT

Background: Brain-lung-thyroid syndrome (BLTS) is caused by NKX2-1 haploinsufficiency, resulting in chorea/choreoathetosis, respiratory problems, and hypothyroidism. Genes interacting with NKX2-1 mutants influence its phenotypic variability. We report a novel NKX2-1 missense variant and the modifier function of TAZ/WWTR1 in BLTS. Methods: A child with BLTS underwent next-generation sequencing panel testing for thyroid disorders. His family was genotyped for NKX2-1 variants and screened for germline mosaicism. Mutant NKX2-1 was generated, and transactivation assays were performed on three NKX2-1 target gene promoters. DNA binding capacity and protein-protein interaction were analyzed. Results: The patient had severe BLTS and carried a novel missense variant c.632A>G (p.N211S) in NKX2-1, which failed to bind to specific DNA promoters, reducing their transactivation. TAZ cotransfection did not significantly increase transcription of these genes, although the variant retained its ability to bind to TAZ. Conclusions: We identify a novel pathogenic NKX2-1 variant that causes severe BLTS and is inherited through germline mosaicism. The mutant lacks DNA-binding capacity, impairing transactivation and suggesting that NKX2-1 binding to DNA is essential for TAZ-mediated transcriptional rescue.


Subject(s)
Mutation, Missense , Thyroid Nuclear Factor 1 , Trans-Activators , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Humans , Male , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/metabolism , Trans-Activators/genetics , Transcriptional Activation , Chorea/genetics , Transcription Factors/genetics , Intracellular Signaling Peptides and Proteins/genetics , Athetosis , Congenital Hypothyroidism , Respiratory Distress Syndrome, Newborn
17.
Life (Basel) ; 14(8)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39202783

ABSTRACT

Hemophilia A is an X-linked disorder characterized by quantitative deficiency of coagulation factor VIII (FVIII) caused by pathogenic variants in the factor 8 (F8) gene. Our study's primary objective was to identify genetic variants within the exonic region of F8 in 50 Colombian male participants with severe hemophilia A (HA). Whole-exome sequencing and bioinformatics analyses were performed, and bivariate analysis was used to evaluate the relationship between identified variants, disease severity, and inhibitor risk formation. Out of the 50 participants, 21 were found to have 17 different pathogenic F8 variants (var). It was found that 70% (var = 12) of them were premature truncation variants (nonsense, frameshift), 17.6% (var = 3) were missense mutations, and 11.7% (var = 2) were splice-site variants. Interestingly, 35% (var = 6) of the identified variants have not been previously reported in the literature. All patients with a history of positive inhibitors (n = 4) were found to have high-impact genetic variants (nonsense and frameshift). When investigating the relationship between variant location (heavy versus light chain) and specific inhibitor risk, 75% (n = 3) of the inhibitor participants were found to have variants located in the F8 light chain (p = 0.075), suggesting that conserved domains are associated with higher inhibitor risk. In summary, we identified genetic variants within the F8 that can possibly influence inhibitor development in Colombian patients with severe HA. Our results provide a basis for future studies and the development of further personalized treatment strategies in this population.

18.
Am J Med Genet A ; 161A(1): 192-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23197429

ABSTRACT

We report on two daughters and a son of a Thai family who were affected with BWS. Their clinical findings consist of cleft palate, omphalocele, anterior ear creases, indented lesions on the posterior rim of the helix, macroglossia, posterior crossbite, and anterior open bite. The younger daughter and son had newly recognized findings of the BWS including sensorineural hearing loss and supernumerary flexion creases of the fingers. A novel mutation in CDKN1C (c.579delT; p.A193AfsX46) was found in all affected individuals and their mother. This mutation is located in the central highly polymorphic hexanucleotide repeat encoding a proline-alanine series of repeats (PAPA-domain). This domain is involved in MAP kinase phosphorylation. This is for the first time that sensorineural hearing loss and supernumerary flexion creases of the fingers are associated with mutation in CDKN1C.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Cleft Palate/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/pathology , Child , Child, Preschool , Cleft Palate/diagnosis , Cleft Palate/pathology , Female , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Hernia, Umbilical/diagnosis , Hernia, Umbilical/genetics , Hernia, Umbilical/pathology , Humans , Infant , MAP Kinase Signaling System , Macroglossia/diagnosis , Macroglossia/genetics , Macroglossia/pathology , Male , Phosphorylation
19.
Genes (Basel) ; 14(4)2023 03 29.
Article in English | MEDLINE | ID: mdl-37107578

ABSTRACT

Autism spectrum disorders (ASD) comprise a group of neurodevelopmental disorders (NDD) characterized by deficits in communication and social interaction, as well as repetitive and restrictive behaviors, etc. The genetic implications of ASD have been widely documented, and numerous genes have been associated with it. The use of chromosomal microarray analysis (CMA) has proven to be a rapid and effective method for detecting both small and large deletions and duplications associated with ASD. In this article, we present the implementation of CMA as a first-tier test in our clinical laboratory for patients with primary ASD over a prospective period of four years. The cohort was composed of 212 individuals over 3 years of age, who met DSM-5 diagnostic criteria for ASD. The use of a customized array-CGH (comparative genomic hybridization) design (KaryoArray®) found 99 individuals (45.20%) with copy number variants (CNVs); 34 of them carried deletions (34.34%) and 65 duplications (65.65%). A total of 28 of 212 patients had pathogenic or likely pathogenic CNVs, representing approximately 13% of the cohort. In turn, 28 out of 212 (approximately 12%) had variants of uncertain clinical significance (VUS). Our findings involve clinically significant CNVs, known to cause ASD (syndromic and non-syndromic), and other CNVs previously related to other comorbidities such as epilepsy or intellectual disability (ID). Lastly, we observed new rearrangements that will enhance the information available and the collection of genes associated with this disorder. Our data also highlight that CMA could be very useful in diagnosing patients with essential/primary autism, and demonstrate the existence of substantial genetic and clinical heterogeneity in non-syndromic ASD individuals, underscoring the continued challenge for genetic laboratories in terms of its molecular diagnosis.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Tertiary Care Centers , Prospective Studies , Comparative Genomic Hybridization/methods , Microarray Analysis
20.
Hum Mutat ; 33(2): 343-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22052668

ABSTRACT

Herein, we have studied a consanguineous Egyptian family with two children diagnosed with severe autosomal recessive osteogenesis imperfecta (AR-OI) and a large umbilical hernia. Homozygosity mapping in this family showed lack of linkage to any of the previously known AR-OI genes, but revealed a 10.27 MB homozygous region on chromosome 8p in the two affected sibs, which comprised the procollagen I C-terminal propeptide (PICP) endopeptidase gene BMP1. Mutation analysis identified both patients with a Phe249Leu homozygous missense change within the BMP1 protease domain involving a residue, which is conserved in all members of the astacin group of metalloproteases. Type I procollagen analysis in supernatants from cultured fibroblasts demonstrated abnormal PICP processing in patient-derived cells consistent with the mutation causing decreased BMP1 function. This was further confirmed by overexpressing wild type and mutant BMP1 longer isoform (mammalian Tolloid protein [mTLD]) in NIH3T3 fibroblasts and human primary fibroblasts. While overproduction of normal mTLD resulted in a large proportion of proα1(I) in the culture media being C-terminally processed, proα1(I) cleavage was not enhanced by an excess of the mutant protein, proving that the Phe249Leu mutation leads to a BMP1/mTLD protein with deficient PICP proteolytic activity. We conclude that BMP1 is an additional gene mutated in AR-OI.


Subject(s)
Bone Morphogenetic Protein 1/genetics , Genes, Recessive , Mutation , Osteogenesis Imperfecta/genetics , Adolescent , Amino Acid Sequence , Animals , Base Sequence , Bone Morphogenetic Protein 1/deficiency , Enzyme Activation/genetics , Female , Fibroblasts/enzymology , HEK293 Cells , Homozygote , Humans , Isoenzymes/genetics , Male , Mice , Molecular Sequence Data , NIH 3T3 Cells , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/enzymology , Pedigree , Phenotype , Proteolysis , Sequence Alignment , Sibling Relations
SELECTION OF CITATIONS
SEARCH DETAIL