Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 143(12): 4593-4599, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33733775

ABSTRACT

Although fullerenes were discovered nearly 35 years ago, scientists still struggle to isolate "single molecule" tubular fullerenes larger than C90. In similar fashion, there is a paucity of reports for pristine single-walled carbon nanotubes (SWNTs). In spite of Herculean efforts, the isolation and properties of pristine members of these carbonaceous classes remain largely unfulfilled. For example, the low abundance of spherical and tubular higher fullerenes in electric-arc extracts (<0.01-0.5%) and multiplicity of structural isomers remain a major challenge. Recently, a new isolation protocol for highly tubular fullerenes, also called f ullertubes, was reported. Herein, we describe spectroscopic characterization including 13C NMR, XPS, and Raman results for purified [5,5] fullertube family members, D5h-C90 and D5d-C100. In addition, DFT computational HOMO-LUMO gaps, polarizability indices, and electron density maps were also obtained. The Raman and 13C NMR results are consistent with semiconducting and metallic properties for D5h-C90 and D5d-C100, respectively. Our report suggests that short [5,5] fullertubes with aspect ratios of only ∼1.5-2 are metallic and could exhibit unique electronic properties.

2.
J Am Chem Soc ; 142(36): 15614-15623, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32830484

ABSTRACT

We report a chemical separation method to isolate fullertubes: a new and soluble allotrope of carbon whose structure merges nanotube, graphene, and fullerene subunits. Fullertubes possess single-walled carbon nanotube belts resembling a rolled graphene midsection, but with half-fullerene end-caps. Unlike nanotubes, fullertubes are reproducible in structure, possess a defined molecular weight, and are soluble in pristine form. The high reactivity of amines with spheroidal fullerene cages enables their removal and allows a facile isolation of C96-D3d(3), C90-D5h(1), and C100-D5d(1) fullertubes. A nonchromatographic step (Stage 1) uses a selective reaction of carbon cages with aminopropanol to permit a highly enriched sample of fullertubes. Spheroidal fullerenes are reacted and removed by attaching water-soluble groups onto their cage surfaces. With this enriched (100-1000 times) fullertube mixture, Stage 2 becomes a simple HPLC collection with a single column. This two-stage separation approach permits fullertubes in scalable quantities. Characterization of purified C100-D5d(1) fullertubes is done with samples isolated in pristine and unfunctionalized form. Surprisingly, C60 and C100-D5d(1) are both purplish in solution. For X-ray crystallographic analysis, we used decapyrrylcorannulene (DPC). Isomerically purified C90 and C100 fullertubes were mixed with DPC to obtain black cocrystals of 2DPC{C90-D5h(1)}·4(toluene) and 2DPC{C100-D5d(1)}·4(toluene), respectively. A serendipitous outcome of this chemical separation approach is the enrichment and purification of several unreported larger carbon species, e.g., C120, C132, and C156. Isolation of these higher cage species represents a significant advance in the unknown experimental arena of C100-C200 structures. Our findings represent seminal experimental evidence for the existence of two mathematically predicted families of fullertubes: one family with an axial hexagon with the other series based on an axial pentagon ring. Fullertubes have been predicted theoretically, and herein is their experimental evidence, isolation, and initial characterization.

3.
Chemistry ; 25(54): 12545-12551, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31268197

ABSTRACT

Purified samples of Ho3 N@C2 (22010)-C78 and Tb3 N@C2 (22010)-C78 have been isolated by two distinct processes from the rich array of fullerenes and endohedral fullerenes present in carbon soot from graphite rods doped with Ho2 O3 or Tb4 O7 . Crystallographic analysis of the endohedral fullerenes as cocrystals with Ni(OEP) (in which OEP is the dianion of octaethylporphyrin) shows that both molecules contain the chiral C2 (22010)-C78 cage. This cage does not obey the isolated pentagon rule (IPR) but has two sites where two pentagons share a common C-C bond. These pentalene units bind two of the metal ions, whereas the third metal resides near a hexagon of the cage. Inside the cages, the Ho3 N or Tb3 N unit is planar. Ho3 N@C2 (22010)-C78 and Tb3 N@C2 (22010)-C78 use the same cage previously found for Gd3 N@C2 (22010)-C78 rather than the IPR-obeying cage found in Sc3 N@D3h -C78 .

4.
Chemistry ; 24(51): 13479-13484, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30051509

ABSTRACT

A method has been developed for isolating a pure sample of Er2 C94 from the myriad of fullerenes and endohedral fullerenes that are formed in the electric arc process. Crystallographic analysis of Er2 C94 in a cocrystal formed with Ni(OEP) reveals that the molecule is the carbide Er2 C2 @D3 (85)-C92 . Crystals of Er2 C2 @D3 (85)-C92 ⋅Ni(octaethylporphyrin)⋅2 C7 H8 are isostructural with those of Sm2 @D3 (85)-C92 ⋅Ni(octaethylporphyrin)⋅2 (chlorobenzene). Comparisons are made between the four crystallographically characterized endohedrals (Er2 C2 @D3 (85)-C92 , Gd2 C2 @D3 (85)-C92 , La2 C2 @D3 (85)-C92 , and Sm2 @D3 (85)-C92 ) that utilize the chiral D3 (85)-C92 cage.

SELECTION OF CITATIONS
SEARCH DETAIL