Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 24(11): 1933-1946, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828378

ABSTRACT

The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.


Subject(s)
Influenza, Human , Humans , Mice , Animals , Epitopes , T-Lymphocytes, Cytotoxic , CD8-Positive T-Lymphocytes , Peptides , Epitopes, T-Lymphocyte
2.
J Immunol ; 210(5): 668-680, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36695776

ABSTRACT

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Subject(s)
Marek Disease , Animals , Alleles , Amino Acids , Cell Membrane , Chickens , Marek Disease/genetics , Histocompatibility Antigens Class I/immunology
3.
Mol Cell Proteomics ; 22(4): 100519, 2023 04.
Article in English | MEDLINE | ID: mdl-36828127

ABSTRACT

Posttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes. Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA class-I and class-II complexes. Our results indicate that HLA class-I-spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%) yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor, and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.


Subject(s)
Histocompatibility Antigens Class I , Neoplasms , Animals , Mice , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Neoplasms/genetics , RNA Splicing , Peptides/metabolism
4.
Mol Cell Proteomics ; 21(11): 100410, 2022 11.
Article in English | MEDLINE | ID: mdl-36089194

ABSTRACT

Little is known about the pathways regulating MHC antigen presentation and the identity of treatment-specific T cell antigens induced by ionizing radiation. For this reason, we investigated the radiation-specific changes in the colorectal tumor cell proteome. We found an increase in DDX58 and ZBP1 protein expression, two nucleic acid sensing molecules likely involved in induction of the dominant interferon response signature observed after genotoxic insult. We further observed treatment-induced changes in key regulators and effector proteins of the antigen processing and presentation machinery. Differential regulation of MHC allele expression was further driving the presentation of a significantly broader MHC-associated peptidome postirradiation, defining a radiation-specific peptide repertoire. Interestingly, treatment-induced peptides originated predominantly from proteins involved in catecholamine synthesis and metabolic pathways. A nuanced relationship between protein expression and antigen presentation was observed where radiation-induced changes in proteins do not correlate with increased presentation of associated peptides. Finally, we detected an increase in the presentation of a tumor-specific neoantigen derived from Mtch1. This study provides new insights into how radiation enhances antigen processing and presentation that could be suitable for the development of combinatorial therapies. Data are available via ProteomeXchange with identifier PXD032003.


Subject(s)
Antigen Presentation , Proteome , Proteome/metabolism , Peptides/metabolism , Proteomics , Radiation, Ionizing
5.
Immunology ; 168(3): 420-431, 2023 03.
Article in English | MEDLINE | ID: mdl-36111495

ABSTRACT

Oesophageal adenocarcinoma (OAC) has a relatively poor long-term survival and limited treatment options. Promising targets for immunotherapy are short peptide neoantigens containing tumour mutations, presented to cytotoxic T-cells by human leucocyte antigen (HLA) molecules. Despite an association between putative neoantigen abundance and therapeutic response across cancers, immunogenic neoantigens are challenging to identify. Here we characterized the mutational and immunopeptidomic landscapes of tumours from a cohort of seven patients with OAC. We directly identified one HLA-I presented neoantigen from one patient, and report functional T-cell responses from a predicted HLA-II neoantigen in a second patient. The predicted class II neoantigen contains both HLA I and II binding motifs. Our exploratory observations are consistent with previous neoantigen studies in finding that neoantigens are rarely directly observed, and an identification success rate following prediction in the order of 10%. However, our identified putative neoantigen is capable of eliciting strong T-cell responses, emphasizing the need for improved strategies for neoantigen identification.


Subject(s)
Adenocarcinoma , Antigens, Neoplasm , Humans , Antigens, Neoplasm/genetics , Histocompatibility Antigens Class I , T-Lymphocytes, Cytotoxic , HLA Antigens , Histocompatibility Antigens Class II , Immunotherapy
6.
J Virol ; 96(10): e0043222, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35475667

ABSTRACT

There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , HIV Seropositivity , HLA-C Antigens , Alleles , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte , HIV Infections/immunology , HIV-1 , HLA-C Antigens/genetics , Humans , Peptides/metabolism
7.
J Immunol ; 206(10): 2489-2497, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33789985

ABSTRACT

MHC peptide binding and presentation is the most selective event defining the landscape of T cell epitopes. Consequently, understanding the diversity of MHC alleles in a given population and the parameters that define the set of ligands that can be bound and presented by each of these alleles (the immunopeptidome) has an enormous impact on our capacity to predict and manipulate the potential of protein Ags to elicit functional T cell responses. Liquid chromatography-mass spectrometry analysis of MHC-eluted ligand data has proven to be a powerful technique for identifying such peptidomes, and methods integrating such data for prediction of Ag presentation have reached a high level of accuracy for both MHC class I and class II. In this study, we demonstrate how these techniques and prediction methods can be readily extended to the bovine leukocyte Ag class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by eluted ligand data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-Friesian populations. The model generated (NetBoLAIIpan, available as a Web server at www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power to identify known BoLA-DR-restricted CD4 epitopes. In summary, the results demonstrate the power of an integrated approach combining advanced mass spectrometry peptidomics with immunoinformatics for characterization of the BoLA-DR Ag presentation system and provide a prediction tool that can be used to assist in rational evaluation and selection of bovine CD4 T cell epitopes.


Subject(s)
Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class II/immunology , Peptides/immunology , Alleles , Animals , Base Sequence , CD4-Positive T-Lymphocytes/parasitology , Cattle , Cells, Cultured , Computer Simulation , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Antigens Class II/genetics , Ligands , Mass Spectrometry/methods , Protein Binding , Theileria annulata , Theileria parva , Theileriasis/immunology , Theileriasis/parasitology
8.
Mol Cell Proteomics ; 20: 100124, 2021.
Article in English | MEDLINE | ID: mdl-34303857

ABSTRACT

Standardization of immunopeptidomics experiments across laboratories is a pressing issue within the field, and currently a variety of different methods for sample preparation and data analysis tools are applied. Here, we compared different software packages to interrogate immunopeptidomics datasets and found that Peaks reproducibly reports substantially more peptide sequences (~30-70%) compared with Maxquant, Comet, and MS-GF+ at a global false discovery rate (FDR) of <1%. We noted that these differences are driven by search space and spectral ranking. Furthermore, we observed differences in the proportion of peptides binding the human leukocyte antigen (HLA) alleles present in the samples, indicating that sequence-related differences affected the performance of each tested engine. Utilizing data from single HLA allele expressing cell lines, we observed significant differences in amino acid frequency among the peptides reported, with a broadly higher representation of hydrophobic amino acids L, I, P, and V reported by Peaks. We validated these results using data generated with a synthetic library of 2000 HLA-associated peptides from four common HLA alleles with distinct anchor residues. Our investigation highlights that search engines create a bias in peptide sequence depth and peptide amino acid composition, and resulting data should be interpreted with caution.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Peptides/chemistry , Search Engine , Alleles , Amino Acid Sequence , Histocompatibility Antigens Class I/genetics , Humans , Mass Spectrometry , Peptide Library , Peptides/genetics , Proteomics/methods
9.
Genome Res ; 29(10): 1578-1590, 2019 10.
Article in English | MEDLINE | ID: mdl-31537638

ABSTRACT

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Subject(s)
Neoplasms/genetics , Retroelements/genetics , Transcriptome/genetics , Gene Expression Profiling , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Phylogeny , Retroelements/immunology , Terminal Repeat Sequences/genetics , Transcriptome/immunology
10.
Expert Rev Proteomics ; 19(2): 77-88, 2022 02.
Article in English | MEDLINE | ID: mdl-35390265

ABSTRACT

INTRODUCTION: The comprehensive collection of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell-based therapeutics and vaccines. These applications are, however, challenged by the complex nature of immunopeptidome data. AREAS COVERED: Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large-scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION: Further, we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large-scale immunopeptidomics data.


Subject(s)
Histocompatibility Antigens Class I , Tandem Mass Spectrometry , Antigen Presentation , Chromatography, Liquid , Humans , Machine Learning
11.
Mol Cell Proteomics ; 19(5): 871-883, 2020 05.
Article in English | MEDLINE | ID: mdl-32161166

ABSTRACT

Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behçet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position Ω). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ∼40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis.


Subject(s)
Aminopeptidases/metabolism , Behcet Syndrome/metabolism , HLA-B Antigens/metabolism , Minor Histocompatibility Antigens/metabolism , Peptides/metabolism , Proteome/metabolism , Amino Acids/metabolism , Cell Membrane/metabolism , Gene Silencing , HeLa Cells , Humans , Protein Binding
13.
Proc Natl Acad Sci U S A ; 116(49): 24748-24759, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31748275

ABSTRACT

Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross-Priming/genetics , HIV Infections/immunology , HIV-1/immunology , Proteasome Endopeptidase Complex/metabolism , AIDS Vaccines/immunology , AIDS Vaccines/therapeutic use , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cohort Studies , Cross Reactions/immunology , Datasets as Topic , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , HIV Infections/blood , HIV Infections/therapy , HIV Infections/virology , HIV-1/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immune Evasion , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Proteasome Endopeptidase Complex/immunology , RNA Splicing/immunology , RNA, Viral/blood , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Seq , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
14.
Proteomics ; 21(23-24): e2000143, 2021 12.
Article in English | MEDLINE | ID: mdl-34310018

ABSTRACT

T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.


Subject(s)
Histocompatibility Antigens Class I , Proteomics , Histocompatibility Antigens Class II , Ligands , Mass Spectrometry , T-Lymphocytes
15.
Proteomics ; 21(17-18): e2100142, 2021 09.
Article in English | MEDLINE | ID: mdl-34275180

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are a critical arm of the immune response to viral infections. The activation and expansion of antigen specific CTL requires recognition of peptide antigens presented on class I major histocompatibility complex molecules (MHC-1) of infected cells. Methods to identify presented peptide antigens that do not rely on the pre-existence of antigen specific CTL are critical to the development of new vaccines. We infected activated CD4+ T cells with two HIV-1 transmitted founder (TF) isolates and used high-resolution mass spectrometry (MS) to identify HIV peptides bound on MHC-1. Using this approach, we identified 14 MHC-1 bound peptides from across the two TF isolates. Assessment of predicted binding thresholds revealed good association of the identified peptides to the shared HLA alleles between the HIV+ donors and the naïve PBMC sample with three peptides identified through peptide sequencing inducing a CD8 T-cell response (p < 0.05). Direct infection of naïve CD4 cells by HIV TF isolates and sequencing of MHC-I presented peptides by HPLC-MS/MS enables identification of novel peptides that may be missed by alternative epitope mapping strategies and can provide valuable insight in to the first peptides presented by an HIV-infected CD4 cell in the first few days post infection.


Subject(s)
HIV-1 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Leukocytes, Mononuclear , Tandem Mass Spectrometry
16.
Mol Cell Proteomics ; 18(12): 2459-2477, 2019 12.
Article in English | MEDLINE | ID: mdl-31578220

ABSTRACT

The set of peptides presented on a cell's surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of (1) clustering peptides into individual specificities; (2) automatic annotation of each cluster to an MHC molecule; and (3) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse data sets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T-cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T-cell-based therapeutics.


Subject(s)
Algorithms , Computational Biology/methods , Epitopes, T-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/metabolism , Amino Acid Motifs , Animals , Benchmarking , Cattle , Cell Line , Databases, Protein , Datasets as Topic , Humans , Ligands , Machine Learning , Mass Spectrometry , Peptides/metabolism , Protein Binding
17.
Proteomics ; 20(12): e1900401, 2020 06.
Article in English | MEDLINE | ID: mdl-32359108

ABSTRACT

Understanding the most appropriate workflow for biochemical human leukocyte antigen (HLA)-associated peptide enrichment prior to ligand sequencing is essential to achieve optimal sensitivity in immunopeptidomics experiments. The use of different detergents for HLA solubilization as well as complementary workflows to separate HLA-bound peptides from HLA protein complex components after their immunoprecipitation including HPLC, C18 cartridge, and 5 kDa filter are described. It is observed that all solubilization approaches tested led to similar peptide ligand identification rates; however, a higher number of peptides are identified in samples lysed with CHAPS compared with other methods. The HPLC method is superior in terms of HLA-I peptide recovery compared with 5 kDa filter and C18 cartridge peptide purification methods. Most importantly, it is observed that both the choice of detergent and peptide purification strategy creates a significant bias for the identified peptide sequences, and that allele-specific peptide repertoires are affected depending on the workflow of choice. The results highlight the importance of employing a suitable strategy for HLA peptide enrichment and that the obtained peptide repertoires do not necessarily reflect the true distributions of peptide sequences in the sample.


Subject(s)
HLA Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Proteome/metabolism , Proteomics/methods , Amino Acid Sequence , Chromatography, High Pressure Liquid/methods , Detergents/chemistry , HLA Antigens/immunology , HLA Antigens/isolation & purification , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/isolation & purification , Humans , Peptides/immunology , Peptides/isolation & purification , Proteome/immunology
18.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31217245

ABSTRACT

Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-C Antigens/metabolism , Immunodominant Epitopes/immunology , Proteomics/methods , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Chromatography, Liquid , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/isolation & purification , HIV Infections/virology , HIV-1/chemistry , Humans , Immunodominant Epitopes/isolation & purification , Mice , Tandem Mass Spectrometry
19.
Mol Cell ; 45(6): 801-13, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22361354

ABSTRACT

The deubiquitylation enzyme USP7/HAUSP plays a major role in regulating genome stability and cancer prevention by controlling the key proteins involved in the DNA damage response. Despite this important role in controlling other proteins, USP7 itself has not been recognized as a target for regulation. Here, we report that USP7 regulation plays a central role in DNA damage signal transmission. We find that stabilization of Mdm2, and correspondingly p53 downregulation in unstressed cells, is accomplished by a specific isoform of USP7 (USP7S), which is phosphorylated at serine 18 by the protein kinase CK2. Phosphorylation stabilizes USP7S and thus contributes to Mdm2 stabilization and downregulation of p53. After ionizing radiation, dephosphorylation of USP7S by the ATM-dependent protein phosphatase PPM1G leads to USP7S downregulation, followed by Mdm2 downregulation and accumulation of p53. Our findings provide a quantitative transmission mechanism of the DNA damage signal to coordinate a p53-dependent DNA damage response.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/physiology , DNA-Binding Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Ataxia Telangiectasia Mutated Proteins , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Down-Regulation , HeLa Cells/radiation effects , Humans , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Phosphorylation , Protein Phosphatase 2C , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Radiation, Ionizing , Serine/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Peptidase 7
20.
Nucleic Acids Res ; 46(D1): D1237-D1247, 2018 01 04.
Article in English | MEDLINE | ID: mdl-28985418

ABSTRACT

Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.


Subject(s)
Databases, Factual , HLA Antigens , Histocompatibility Antigens , Mass Spectrometry , Alleles , HLA Antigens/chemistry , HLA Antigens/immunology , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/immunology , Humans , Internet , Tandem Mass Spectrometry , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL