ABSTRACT
The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC8 led to the isolation of mono-, di-, and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals. Mulliken spin density calculations revealed a dominant localization of radical spin on a single phosphorous atom in the monoanion. In the dianion, spin localization is observed on two phosphorous atoms (~34 % each), with a minor contribution from the third phosphorous (0.13 %), while the trianion demonstrates a uniform distribution of spin density (~30 %) across each phosphorous atom.
ABSTRACT
Thiele's Hydrocarbons (THs) featuring a 9,10-anthrylene core with switchable geometric and electronic configurations offer exciting possibilities in advanced functional materials. Despite significant advances in main group-based diradicaloids in contemporary chemistry, main group THs containing an anthrylene cores have remained elusive, primarily due to the lack of straightforward synthetic strategies and the inherent high reactivity of these species. In this study, we utilize an anthracene-based phosphine synthon to demonstrate, for the first time, a facile and high-yielding synthetic strategy for robust P-functionalized overcrowded ethylenes (OCEs) within the TH family. These OCEs feature a non-symmetric environment, incorporating (thio) xanthyl and phosphaalkene termini. We systematically probe the electronic structures of these derivatives to illustrate the impact of the isolobal phosphaalkene motif on the quinoidal/diradicaloid character. Notably, the compounds exhibit dynamic redox behavior, leading to orthogonally twisted conformational changes upon oxidation, with a kinetically locked redox-couple.
ABSTRACT
Divalent lanthanide (Ln) compounds are excellent reducing agents with unique reactivity profiles. These reagents are typically used in superstoichiometric amounts, often in combination with harmful additives. Reactions catalytic in Ln(II) reagents that retain the reactivity and selectivity of the stoichiometric transformations are currently lacking due to the absence of effective and selective methods to form reactive Ln(II) species from stable precursors. Here, active Ln(II) is generated from a Ln(III) precursor through reduction by a photoexcited coumarin or carbostyril chromophore, which, in turn, is regenerated by a sacrificial reductant. The reductant can be metallic (Zn) or organic (amines) and can be used in strictly stoichiometric amounts. A broad range of reactions, including C-halogen, CâC, CâX (X = O, N), PâO, and NâN reductions, as well as C-C, C-X (X = N, S, P), and N-N couplings were readily carried out in yields and selectivities comparable to or better than those afforded by the analogous stoichiometric transformations. The reaction outcomes could be altered by changing the ligand or the lanthanide or through the addition of environmentally benign additives (e.g., water). EPR spectroscopy supported the formation of both Ln(II) and oxidized chromophore intermediates. Taken together, these results establish photochemical Ln(II) generation as a powerful strategy for rendering Ln(II)-mediated reactions catalytic.
ABSTRACT
The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82- system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV-vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl- or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.
ABSTRACT
A novel approach to anchor a molecular photosensitizer onto a heterogeneous water oxidation catalyst via coordination bonds is presented. A photosensitizer (1) based on [Ru(bpy)3](2+) and decorated with two methylenediphosphonate (M2P) groups has been designed and synthesized for this purpose. The M2P groups in complex 1 allow for coordination of cobalt ions to afford a novel molecular-heterogeneous hybrid material P1. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize P1 as an amorphous, non-uniform material that contains Ru and Co in a ratio of 1 : 2. A suspension of P1 in a buffered aqueous solution is active as a light-driven water oxidation catalyst in the presence of persulfate (S2O8(2-)) as electron acceptor. The yield of oxygen is higher when P1 is prepared in situ by mixing and illuminating 1 and Co(2+) in the presence of S2O8(2-). After oxygen evolution ceases, a second material P2 can be isolated from the reaction mixture. P2 is characterized by a lower Ru content than P1, and contains Co in a higher oxidation state. Interestingly, P2 as a freshly prepared suspension is also active for light-driven water oxidation. It is shown that 1 resides in the interior of P1 and P2, and is thus in a location where undesirable quenching pathways of the photo-excited state of 1 limit the oxygen production yields for both P1 and P2.
Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Light , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Water/chemistry , 2,2'-Dipyridyl/chemistry , Catalysis , Oxidation-ReductionABSTRACT
Two types of manganese oxides have been prepared by hydrolysis of tetranuclear Mn(iii) complexes in the presence or absence of phosphate ions. The oxides have been characterized structurally using X-ray absorption spectroscopy and functionally by O2 evolution measurements. The structures of the oxides prepared in the absence of phosphate are dominated by di-µ-oxo bridged manganese ions that form layers with limited long-range order, consisting of edge-sharing MnO6 octahedra. The average manganese oxidation state is +3.5. The structure of these oxides is closely related to other manganese oxides reported as water oxidation catalysts. They show high oxygen evolution activity in a light-driven system containing [Ru(bpy)3](2+) and S2O8(2-) at pH 7. In contrast, the oxides formed by hydrolysis in the presence of phosphate ions contain almost no di-µ-oxo bridged manganese ions. Instead the phosphate groups are acting as bridges between the manganese ions. The average oxidation state of manganese ions is +3. This type of oxide has much lower water oxidation activity in the light-driven system. Correlations between different structural motifs and the function as a water oxidation catalyst are discussed and the lower activity in the phosphate containing oxide is linked to the absence of protonable di-µ-oxo bridges.
Subject(s)
Manganese Compounds/chemistry , Oxides/chemistry , Phosphates/chemistry , Water/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Spectrophotometry, Infrared , X-Ray Absorption SpectroscopyABSTRACT
The dinuclear Co complex [(TPA)Co(µ-OH)(µ-O2 )Co(TPA)](ClO4 )3 (1, TPA=tris(2-pyridylmethyl)amine) catalyzes the oxidation of water. In the presence of [Ru(bpy)3 ](2+) and S2 O8 (2-) , photoinduced oxygen evolution can be observed with a turnover frequency (TOF) of 1.4±0.1â mol(O2 ) mol(1)(-1) s(-1) and a maximal turnover number (TON) of 58±5â mol(O2 ) mol(1)(-1) . The complex is shown to act as a molecular and homogeneous catalyst and a mechanism is proposed based on the combination of EPR data and light-driven O2 evolution kinetics.
ABSTRACT
The carboxylate stretching frequencies of two high-valent, di-µ-oxido bridged, manganese dimers has been studied with IR spectroscopy in three different oxidation states. Both complexes contain one monodentate carboxylate donor to each Mn ion, in one complex, the carboxylate is coordinated perpendicular to the Mn-(µ-O)(2)-Mn plane, and in the other complex, the carboxylate is coordinated in the Mn-(µ-O)(2)-Mn plane. For both complexes, the difference between the asymmetric and the symmetric carboxylate stretching frequencies decrease for both the Mn(2)(IV,IV) to Mn(2)(III,IV) transition and the Mn(2)(III,IV) to Mn(2)(III,III) transition, with only minor differences observed between the two arrangements of the carboxylate ligand versus the Mn-(µ-O)(2)-Mn plane. The IR spectra also show that both carboxylate ligands are affected for each one electron reduction, i.e., the stretching frequency of the carboxylate coordinated to the Mn ion that is not reduced also shifts. These results are discussed in relation to FTIR studies of changes in carboxylate stretching frequencies in a one electron oxidation step of the water oxidation complex in Photosystem II.
Subject(s)
Manganese/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Carboxylic Acids/chemistry , Dimerization , Oxidation-Reduction , Spectroscopy, Fourier Transform InfraredABSTRACT
Solar conversion of water into the storable energy carrier H2 can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O2 and H2 evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore (PCA) and a tetra-adamantane modified cobaloxime reduction catalyst (Co) that photo-reduces aqueous protons to H2. An original supramolecular approach was employed, using ß-cyclodextrin functionalized gold nanoparticles (ß-CD-AuNPs) to link the alkane chain of the PCA dye to the adamantane moieties of the cobaloxime catalyst (Co). This new architecture was investigated by photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy. The results show that irradiation of the complete NiO|PCA|ß-CD-AuNPs|Co electrode leads to ultrafast hole injection into NiO (π = 3 ps) from the excited dye, followed by rapid reduction of the catalyst, and finally H2 evolution.
ABSTRACT
The synthesis, isolation, and characterization of two high-valent manganese dimers with isomeric ligands are reported. The complexes are synthesized and crystallized from solutions of low-valent precursors exposed to tert-butyl hydroperoxide. The crystal structures display centrosymmetric complexes consisting of Mn(2)(IV,IV)(µ-O)(2) cores, with one ligand coordinating to each manganese. The ligands coordinate with the diaminoethane backbone, the carboxylate, and one of the two pyridines, while the second pyridine is noncoordinating. The activity of these complexes, under water oxidation conditions, is discussed in light of a proposed mechanism for water oxidation, in which this type of complexes have been suggested as a key intermediate.
ABSTRACT
Developing new transition metal catalysts requires understanding of how both metal and ligand properties determine reactivity. Since metal complexes bearing ligands of the Py5 family (2,6-bis-[(2-pyridyl)methyl]pyridine) have been employed in many fields in the past 20 years, we set out here to understand their redox properties by studying a series of base metal ions (M = Mn, Fe, Co, and Ni) within the Py5OH (pyridine-2,6-diylbis[di-(pyridin-2-yl)methanol]) variant. Both reduced (MII) and the one-electron oxidized (MIII) species were carefully characterized using a combination of X-ray crystallography, X-ray absorption spectroscopy, cyclic voltammetry, and density-functional theory calculations. The observed metal-ligand interactions and electrochemical properties do not always follow consistent trends along the periodic table. We demonstrate that this observation cannot be explained by only considering orbital and geometric relaxation, and that spin multiplicity changes needed to be included into the DFT calculations to reproduce and understand these trends. In addition, exchange reactions of the sixth ligand coordinated to the metal, were analysed. Finally, by including published data of the extensively characterised Py5OMe (pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane])complexes, the special characteristics of the less common Py5OH ligand were extracted. This comparison highlights the non-innocent effect of the distal OH functionalization on the geometry, and consequently on the electronic structure of the metal complexes. Together, this gives a complete analysis of metal and ligand degrees of freedom for these base metal complexes, while also providing general insights into how to control electrochemical processes of transition metal complexes.
ABSTRACT
Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surface-immobilized catalysts occurred; however, H2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance.
ABSTRACT
Ferrous chloride complexes [FeIILxCl] commonly attain a high-spin state independently of the supporting ligand(s) and temperature. Herein, we present the first report of a complete spin crossover with T1/2 = 80 K in [FeII(Py5OH)Cl]+ (Py5OH = pyridine-2,6-diylbis[di(pyridin-2-yl)methanol]). Both spin forms of the complex are analyzed by X-ray spectroscopy and DFT calculations.
ABSTRACT
A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage. The amide-coupling protocol was further applied to electrodes that contain a molecular proton reduction catalyst for use in photocathode architectures. Evidence for catalyst reduction was observed during photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy demonstrating the possibility for application in photocathodes.
ABSTRACT
Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.
Subject(s)
Aldehyde Oxidoreductases/chemistry , Carbon/chemistry , Desulfovibrio gigas/enzymology , Molybdenum/chemistry , Aldehyde Oxidoreductases/antagonists & inhibitors , Catalysis , Crystallography, X-Ray , Cyanides/chemistry , Electron Spin Resonance Spectroscopy , Enzyme Inhibitors/chemistry , Ethylene Glycol/chemistry , Glycerol/chemistry , Ligands , Protein ConformationABSTRACT
BACKGROUND: The validity and reproducibility of gene expression studies depend on the quality of extracted RNA and the degree of genomic DNA contamination. Cyanobacteria are gram-negative prokaryotes that synthesize chlorophyll a and carry out photosynthetic water oxidation. These organisms possess an extended array of secondary metabolites that impair cell lysis, presenting particular challenges when it comes to nucleic acid isolation. Therefore, we used the NHM5 strain of Nostoc punctiforme ATCC 29133 to compare and improve existing phenol based chemistry and procedures for RNA extraction. RESULTS: With this work we identify and explore strategies for improved and lower cost high quality RNA isolation from cyanobacteria. All the methods studied are suitable for RNA isolation and its use for downstream applications. We analyse different Trizol based protocols, introduce procedural changes and describe an alternative RNA extraction solution. CONCLUSION: It was possible to improve purity of isolated RNA by modifying protocol procedures. Further improvements, both in RNA purity and experimental cost, were achieved by using a new extraction solution, PGTX.
Subject(s)
Bacteriological Techniques , Nostoc/chemistry , RNA, Bacterial/isolation & purification , Buffers , Nostoc/genetics , PhenolABSTRACT
This work demonstrates that simple copper-bipyridine compounds and atmospheric CO2 react to produce useful/complex materials under appropriate conditions. Starting from a distorted square planar copper(ii) complex, [(tbubpy)CuCl2](tbubpy = 4-tert-butyl-2-(4-tert-butylpyridin-2-yl)pyridine), an air-sensitive, copper(i) complex, [(tbubpy)2CuI][BF4], which exhibits a distorted tetrahedral geometry, was synthesized and characterized. Reactions of [(tbubpy)2CuI][BF4] with CO2 inside a sealed tube and with air were carried out over a week and three weeks, respectively. A new tricopper(ii)-carbonato cluster, [{(tbubpy)2Cu}3(µ-CO3)][PF6]4, was isolated with three distorted octahedral copper(ii) centres bound by a carbonate-bridge formed from atmospheric CO2. NMR and UV-Vis spectroscopic analyses coupled with previous reports point to a multi-step process in the formation of a trinuclear CuII-carbonato cluster that includes the probable involvement of µ-hydroxo-bridged dicopper(ii) type intermediates.
ABSTRACT
ABSTRACT: N,N'-Diphenyl-3,7-diazacyclooctane and structurally related N,N'-diphenylbispidine derivatives react with silver(I) ions in a high-yielding C-C coupling reaction to produce dication-diradical species, with the silver ions serving a double function both as template and as an oxidant. The resulting bis(benzidino)phane derivatives are persistent organic radicals, stable for several months in solution as well as in the solid state, at room temperature and above, as well as being exposed to the atmosphere. The molecular structure features a double-decker cyclophane motif, stabilized by intramolecular π-dimerization of two delocalized benzidinium radical segments. Intermolecular π-dimers are formed in the solid state.
ABSTRACT
Herein, we report three IrIII Cp* complexes with hydroxy- or amino-functionalized N-heterocyclic carbene (NHC) ligands that catalyze efficient water oxidation induced by addition of ceric ammonium nitrate (CAN). The pendant hydroxy or amino groups are very important for activity, and the complexes with heteroatom-functionalized NHC ligands show up to 15 times higher rates of oxygen evolution in CAN-induced water oxidation than a reference IrIII Cp* complex without heteroatom functionalization. The formation of molecular high-valent Ir intermediates that are presumably involved in the rate-determining step for water oxidation is established by UV/Vis spectroscopy and ESI-MS under turnover conditions. The hydroxy groups on the NHC ligands, as well as chloride ligands on the iridium center are proposed to structurally stabilize the high-valent species, and thereby improve the catalytic activity. The IrIII complex with a hydroxy-functionalized NHC shows the highest catalytic activity with a TON of 2500 obtained in 3â h and with >90 % yield relative to the amount of oxidant used.
Subject(s)
Heterocyclic Compounds/chemistry , Iridium/chemistry , Methane/analogs & derivatives , Organometallic Compounds/chemistry , Oxygen/chemistry , Water/chemistry , Amines , Hydroxides , Ligands , Methane/chemistryABSTRACT
Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.