ABSTRACT
Recycled manure solids (RMS) bedding is an alternative bedding option that is growing in popularity on Canadian dairy farms. However, the microbiological characteristics and production of RMS bedding are poorly documented under on-farm conditions in eastern Canada. This bedding could support the presence of pathogens and could have an effect on cow and human health. The aim of this study was to describe the RMS microbiota when used under dairy cows and compare it with straw bedding. Unused and used bedding from 27 RMS and 61 straw-bedded dairy farms were collected and compared using 16S amplicon sequencing, bacterial counts, and Salmonella spp. and Listeria monocytogenes detection. Microbiota composition of unused RMS and unused straw were different. After use, both bedding microbiota were similar in their bacterial composition, structure, and diversity. Unused RMS generally contained higher bacterial counts than did unused straw, except for Klebsiella spp. counts. Salmonella spp. and L. monocytogenes were more frequently detected in unused RMS (Salmonella spp.: 11%; L. monocytogenes: 30%), than in unused straw (Salmonella spp.: 0%; L. monocytogenes: 11%). Finally, 2 RMS production systems (extraction of the liquid fraction followed by maturation in an opened or enclosed container vs. in a heap) did not influence the microbiota richness and bacteria distribution (α-diversity), but did influence the microbiota structure (ß-diversity). In conclusion, animal and human pathogens were found in greater numbers and more frequently in unused RMS than unused straw, and this could eventually affect dairy cow or human health.
Subject(s)
Manure , Microbiota , Animals , Bedding and Linens , Canada , Cattle , Dairying , Farms , Female , Housing, AnimalABSTRACT
BACKGROUND: Avian necrotic enteritis (NE) caused by Clostridium perfringens is a disease with a major economic impact, generating losses estimated to 6 billion of dollars annually for the poultry industry worldwide. The incidence of the disease is particularly on the rise in broiler chicken flocks eliminating the preventive use of antibiotics. To date, no alternative allows for the efficient prevention of NE and a control of the disease using a vaccinal strategy would be mostly prized. For this purpose, comparative and subtractive reverse vaccinology identifying putative immunogenic bacterial surface proteins is one of the most promising approaches. RESULTS: A comparative genomic study was performed on 16 C. perfringens strains isolated from healthy broiler chickens and from broilers affected with necrotic enteritis. Results showed that the analyzed genomes were composed of 155,700 distinct proteins from which 13% were identified as extracellular, 65% as cytoplasmic and 22% as part of the bacterial membrane. The evaluation of the immunogenicity of these proteins was determined using the prediction software VaxiJen®. CONCLUSIONS: For the most part, proteins with the highest scores were associated with an extracellular localisation. For all the proteins analyzed, the combination of both the immunogenicity score and the localisation prediction led to the selection of 12 candidate proteins that were mostly annotated as hypothetical proteins. We describe 6 potential candidates of higher interest due to their antigenic potential, their extracellular localisation, and their possible role in virulence of C. perfringens.
Subject(s)
Enteritis , Poultry Diseases , Animals , Chickens , Clostridium perfringens/genetics , Enteritis/veterinary , Necrosis , VaccinologyABSTRACT
BACKGROUND: Campylobacter jejuni is responsible for human foodborne enteritis. This bacterium is a remarkable colonizer of the chicken gut, with some strains outcompeting others for colonization. To better understand this phenomenon, the objective of this study was to extensively characterize the phenotypic performance of C. jejuni chicken strains and associate their gut colonizing ability with specific genes. RESULTS: C. jejuni isolates (n = 45) previously analyzed for the presence of chicken colonization associated genes were further characterized for phenotypic properties influencing colonization: autoagglutination and chemotaxis as well as adhesion to and invasion of primary chicken caecal cells. This allowed strains to be ranked according to their in vitro performance. After their in vitro capacity to outcompete was demonstrated in vivo, strains were then typed by comparative genomic fingerprinting (CGF). In vitro phenotypical properties displayed a linear variability among the tested strains. Strains possessing higher scores for phenotypical properties were able to outcompete others during chicken colonization trials. When the gene content of strains was compared, some were associated with different phenotypical scores and thus with different outcompeting capacities. Use of CGF profiles showed an extensive genetic variability among the studied strains and suggested that the outcompeting capacity is not predictable by CGF profile. CONCLUSION: This study revealed a wide array of phenotypes present in C. jejuni strains, even though they were all recovered from chicken caecum. Each strain was classified according to its in vitro competitive potential and its capacity to compete for chicken gut colonization was associated with specific genes. This study also exposed the disparity existing between genetic typing and phenotypical behavior of C. jejuni strains.
Subject(s)
Campylobacter Infections/veterinary , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Chickens/microbiology , Gastrointestinal Tract/microbiology , Genes, Bacterial , Genetic Association Studies , Animals , Bacterial Adhesion , Campylobacter Infections/microbiology , Campylobacter jejuni/growth & development , Campylobacter jejuni/isolation & purification , Chemotaxis , Endocytosis , Epithelial Cells/microbiology , VirulenceABSTRACT
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Ecosystem , Fresh Water , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Fishes/microbiology , Environmental Monitoring , Water Pollutants, Chemical , Gene Transfer, Horizontal , Aquatic Organisms/genetics , Animals, Wild/microbiology , Drug Resistance, Bacterial/geneticsABSTRACT
Introduction: Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods: For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion: No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.
ABSTRACT
The carriage of Salmonella in pigs is a major concern for the agri-food industry and for global healthcare systems. Humans could develop salmonellosis when consuming contaminated pig products. On the other hand, some Salmonella serotypes could cause disease in swine, leading to economic losses on farms. The purpose of the present study was to characterize the anti-Salmonella activity of a novel Bacillus-based probiotic using a bioreactor containing a piglet-derived intestinal microbiota. Two methods of probiotic administration were tested: a single daily and a continuous dose. Salmonella enumeration was performed using selective agar at T24h, T48h, T72h, T96h and T120h. The DNA was extracted from bioreactor samples to perform microbiome profiling by targeted 16S rRNA gene sequencing on Illumina Miseq. The quantification of short-chain fatty acids (SCFAs) was also assessed at T120h. The probiotic decreased Salmonella counts at T96 for the daily dose and at T120 for the continuous one. Both probiotic doses affected the alpha and beta diversity of the piglet-derived microbiota (p < 0.05). A decrease in acetate concentration and an increase in propionate proportion were observed in the continuous condition. In conclusion, the tested Bacillus-based product showed a potential to modulate microbiota and reduce Salmonella colonization in a piglet-derived intestinal microbiota and could therefore be used in vivo.
ABSTRACT
Campylobacter jejuni is an important worldwide foodborne pathogen commonly found as a commensal organism in poultry that can reach high numbers within the gut after colonization. Although information regarding some genes involved in colonization is available, little is known about their distribution in strains isolated specifically from chickens and whether there is a linkage between antimicrobial resistance (AMR) and colonization genes. To assess the distribution and relevance of genes associated with chicken colonization and AMR, a C. jejuni microarray was created to detect 254 genes of interest in colonization and AMR including variants. DNA derived from chicken-specific Campylobacter isolates collected in 2003 (n=29) and 2008 (n=28) was hybridized to the microarray and compared. Hybridization results showed variable colonization-associated gene presence. Acquired AMR genes were low in prevalence whereas chemotaxis receptors, arsenic resistance genes, as well as genes from the cell envelope and flagella functional groups were highly variable in their presence. Strains clustered into two groups, each linked to different control strains, 81116 and NCTC11168. Clustering was found to be independent of collection time. We also show that AMR weakly associated with the CJ0628 and arsR genes. Although other studies have implicated numerous genes associated with C. jejuni chicken colonization, our data on chicken-specific isolates suggest the opposite. The enormous variability in presumed colonization gene prevalence in our chicken isolates suggests that many are of lesser importance than previously thought. Alternatively, this also suggests that combinations of genes may be required for natural colonization of chicken intestines.
Subject(s)
Campylobacter jejuni/genetics , Chickens/microbiology , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Animals , Anti-Infective Agents/pharmacology , Campylobacter jejuni/isolation & purification , Cluster Analysis , DNA, Bacterial/genetics , Intestines/microbiology , Oligonucleotide Array Sequence Analysis , Reproducibility of ResultsABSTRACT
Campylobacter jejuni is an important foodborne pathogen. Despite the lack of clinical signs associated with its colonization in poultry, it has been reported to interact with the intestinal immune system. However, little is known about the interaction between C. jejuni and the chicken immune system, especially in the context of hepatic dissemination. Therefore, to follow up on our previous study showing intestinal colonization and hepatic spread of C. jejuni, cecal tonsils and liver samples were collected from these birds to determine the mRNA levels of chemokines and cytokines. Serum samples were also collected to determine serum amyloid A (SAA) concentrations and specific IgY titers. Lack of Th17 induction was observed in the cecal tonsils of only the liver-contaminated groups. This hepatic dissemination was accompanied by innate, Th1 and Th2 immune responses in livers, as well as an increase in SAA concentrations and specific IgY levels in sera. Campylobacter appears to be able to restrain the induction of the chicken gut immunity in particular conditions, possibly enhancing its hepatic dissemination and thus eliciting systemic immune responses. Although Campylobacter is often recognized as a commensal-like bacterium in chickens, it seems to modulate the gut immune system and induce systemic immunity.
ABSTRACT
BACKGROUND: Modulating the microbiota is an emerging way to improve pig health. In-vitro bioreactor systems can be used to reproduce intestinal microbiota to study modulating avenues. In this study, a continuous feeding system to support a microbiota derived from piglet colonic contents, over 72 h, was developed. The microbiota from piglets was collected and used as inoculum. The culture media was derived from an artificial digestion of piglet feed. The microbiota diversity in time, the reproducibility between replicates and the diversity of the bioreactor microbiota compared to the inoculum was assessed. Essential oils were used as a proof of concept to assess the in vitro microbiota modulation. The microbiota diversity was assessed by 16S rRNA amplicon sequencing. Quantitative PCR was also used for total bacteria, lactobacilli and Enterobacteria. RESULTS: At the start of the assay, the bioreactor microbiota diversity was similar to the inoculum. Time and replication affected the bioreactor microbiota diversity. Between 48 and 72 h, no statistical variation of the microbiota diversity was observable. After a 48 h running period, thymol and carvacrol were added at 200 ppm or 1000 ppm for 24 h. No microbiota modification was observed by sequencing. Quantitative PCR results showed a significant growth of lactobacilli when thymol was used at 1000 ppm, where only a trend was observed with the 16S analysis. CONCLUSIONS: This study presents a bioreactor assay that can be used as a tool for rapid screening of additives and suggests that the effects of essential oils on the microbiota are subtle, acting against a few bacterial genera.
Subject(s)
Oils, Volatile , Animals , Swine , Oils, Volatile/pharmacology , Thymol/pharmacology , Gastrointestinal Contents , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Bioreactors , Bacteria/geneticsABSTRACT
It is profitable to export fresh meat overseas, where it is often regarded as a premium commodity. Meeting this demand for fresh meat, however, necessitates long export times, during which uncontrolled temperature increases can affect the microbiological quality of the meat and thereby, reduce shelf life or compromise food safety. To study the impact of temperature deviations on microbial community composition and diversity, we used 16S rRNA gene sequencing for Listeria monocytogenes and Salmonella spp. detection to describe the surface microbiota of eight batches of vacuum-packed loins stored at -1.5 °C (control) for 56 days and subjected to a 2 °C or 10 °C temperature deviation for a few hours (mimicking problems regularly encountered in the industry) at day 15 or 29. The presence of pathogens was negligible. The applied temperature deviations were not associated with different microbiota. Sequencing analysis showed the presence of Yersinia, an unexpected pathogen, and relative abundance increased in the groups subjected to temperature deviations. Over time, Lactobacillales_unclassified genus became the main constituent of the microbiota of vacuum-packed pork loins. Although the microbiota of the eight batches appeared similar at the beginning of storage, differences were revealed after 56 days, suggesting unequal aging of the microbiota.
ABSTRACT
Enterotoxigenic Clostridium perfringens is one of the main causes of foodborne illness in Canada. The use of a conventional bacterial culture approach to isolate enterotoxigenic C. perfringens from poultry meat is common. This approach is based on the phenotype attributable to a double hemolysis phenomenon, whereas few enterotoxigenic strains of C. perfringens produce it, which further complicates the study of the reservoirs of this important pathogen. The objectives of the current study were to validate the ability of a digoxigenin-labeled probe to detect the C. perfringens cpe gene and to validate the use of either a filtration or a direct plating approach, combined with colony hybridization to detect enterotoxigenic C. perfringens. Pure DNA and pure colonies of enterotoxigenic C. perfringens and broiler chicken carcass rinsate samples were subjected to colony hybridization. The results showed that the synthesized DNA probe can detect the cpe gene from both DNA and pure colonies of enterotoxigenic C. perfringens, and from colonies grown from carcass rinsates artificially contaminated with enterotoxigenic C. perfringens. Our study suggests that this isolation method is a promising tool for a better understanding of the epidemiology of this zoonotic pathogen.
ABSTRACT
The microorganisms found on fresh, raw meat cuts at a slaughterhouse can influence the meat's safety and spoilage patterns along further stages of processing. However, little is known about the general microbial ecology of the production environment of slaughterhouses. We used 16s rRNA sequencing and diversity analysis to characterize the microbiota heterogeneity on conveyor belt surfaces in the cutting room of a swine slaughterhouse from different production lines (each associated with a particular piece/cut of meat). Variation of the microbiota over a period of time (six visits) was also evaluated. Significant differences of alpha and beta diversity were found between the different visits and between the different production lines. Bacterial genera indicative of each visit and production line were also identified. We then created random forest models that, based on the microbiota of each sample, allowed us to predict with 94% accuracy to which visit a sample belonged and to predict with 88% accuracy from which production line it was taken. Our results suggest a possible influence of meat cut on processing surface microbiotas, which could lead to better prevention, surveillance, and control of microbial contamination of meat during processing.
ABSTRACT
Since the ban or reduction on the use of antibiotic growth promoters (AGPs) in commercial broiler chickens in many countries, avian necrotic enteritis (NE) caused by Clostridium perfringens has re-emerged as one of the biggest threats for the poultry industry worldwide. While the toolbox for controlling NE in the absence of antibiotics consists of a limited number of alternatives for which the overall effectiveness has yet proven to be suboptimal, an effective vaccine would represent the best control strategy for this often-deadly disease. Using a comparative and subtractive reverse vaccinology approach, we previously identified 14 putative antigenic proteins unique to NE-causing strains of C. perfringens. In the current work, the in silico findings were confirmed by PCR and sequencing, and five vaccine candidate proteins were produced and purified subsequently. Among them, two candidates were hypothetical proteins, two candidates were prepilin proteins which are predicted to form the subunits of a pilus structure, and one candidate was a non-heme iron protein. Western blotting and ELISA results showed that immunization of broiler chickens with five of these proteins raised antibodies which can specifically recognize both the recombinant and native forms of the protein in pathogenic C. perfringens.
Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Clostridium perfringens/genetics , Chickens , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Enteritis/pathology , Vaccination , Fimbriae Proteins , NecrosisABSTRACT
Avian necrotic enteritis is an enteric disease of broiler chickens caused by certain pathogenic strains of Clostridium perfringens in combination with predisposing factors. A vaccine offering complete protection against the disease has not yet been commercialized. In a previous study, we produced five recombinant proteins predicted to be surface-exposed and unique to necrotic enteritis-causing C. perfringens and the immunogenicity of these potential vaccine candidates was assessed in broiler chickens. In the current work, the relative contribution of the antibodies raised by these putative antigens to protect broiler chickens was evaluated using an experimental necrotic enteritis induction model. Additionally, the link between the immune response elicited and the gut microbiota profiles in immunized birds subjected to infection with virulent C. perfringens was studied. The ELISA results showed that the IgY antibody titers in vaccinated birds on days 21 and 33 were significantly higher than those on days 7 and 14 and those in birds receiving the adjuvant alone, while the relative contribution of the specific immunity attributed to these antibodies could not be precisely determined using this experimental necrotic enteritis induction model. In addition, 16S rRNA gene amplicon sequencing showed that immunization of birds with recombinant proteins had a low impact on the chicken caecal microbiota.
ABSTRACT
Campylobacter jejuni is the most prevalent bacterial foodborne pathogen in humans. Given the wide genetic diversity of C. jejuni strains found in poultry production, a better understanding of the relationships between these strains within chickens could lead to better control of this pathogen on farms. In this study, 14-day old broiler chickens were inoculated with two C. jejuni strains (103 or 107 CFU of D2008b and 103 CFU of G2008b, alone or together) that were previously characterized in vitro and that showed an opposite potential to compete for gut colonization in broilers. Liver samples and ileal and cecal contents were collected and used to count total C. jejuni and to quantify the presence of each strain using a strain specific qPCR or PCR approach. Ileal tissue samples were also collected to analyze the relative expression level of tight junction proteins. While a 103 CFU inoculum of D2008b alone was not sufficient to induce intestinal colonization, this strain benefited from the G2008b colonization for its establishment in the gut and its extraintestinal spread. When the inoculum of D2008b was increased to 107 CFU - leading to its intestinal and hepatic colonization - a dominance of G2008b was measured in the gut and D2008b was found earlier in the liver for birds inoculated by both strains. In addition, a transcript level decrease of JAM2, CLDN5 and CLDN10 at 7 dpi and a transcript level increase of ZO1, JAM2, OCLN, CLDN10 were observed at 21 dpi for groups of birds having livers contaminated by C. jejuni. These discoveries suggest that C. jejuni would alter the intestinal barrier function probably to facilitate the hepatic dissemination. By in vitro co-culture assay, a growth arrest of D2008b was observed in the presence of G2008b after 48 h of culture. Based on these results, commensalism and competition seem to occur between both C. jejuni strains, and the dynamics of C. jejuni intestinal colonization and liver spread in broilers appear to be strain dependent. Further in vivo experimentations should be conducted to elucidate the mechanisms of commensalism and competition between strains in order to develop adequate on-farm control strategies.
ABSTRACT
Bacterial contamination during meat processing is a concern for both food safety and for the shelf life of pork meat products. The gut microbiota of meat-producing animals is one of the most important sources of surface contamination of processed carcasses. This microbiota is recognized to vary between pigs from different farms and could thus be reflected on the bacterial contamination of carcasses at time of processing. In this study, the microbiota of 26 carcasses of pigs originating from different farms (i.e., batches) were compared to determine if an association could be observed between carcass surface microbiota (top and bottom) and the origin of slaughtered animals. The microbiota of the top and bottom carcass surface areas was analyzed by culturing classical indicator microorganisms (mesophilic aerobic bacteria, Enterobacteria, Escherichia coli, Pseudomonas, and lactic bacteria), by the detection of Salmonella, and by 16S rRNA gene sequencing. Culture results showed higher Enterobacteria, E. coli, and lactic bacteria counts for the bottom areas of the carcasses (neck/chest/shoulder) when compared to the top areas. Salmonella was not detected in any samples. Globally, 16S rRNA gene sequencing showed a similar composition and diversity between the top and bottom carcass areas. Despite the presence of some genera associated with fecal contamination such as Terrisporobacter, Escherichia-Shigella, Turicibacter, Clostridium sensustricto1, and Streptococcus on the carcass surface, sequencing analysis suggested that there was no difference between the different batches of samples from the top and bottom areas of the carcasses. The primary processing therefore appears to cause a uniformization of the carcass global surface microbiota, with some specific bacteria being different depending on the carcass area sampled.
ABSTRACT
The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.
ABSTRACT
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
ABSTRACT
ABSTRACT: Salmonella is a foodborne pathogen commonly associated with poultry products. The aims of this work were to (i) estimate the impact of critical steps of the slaughter process on Salmonella detection from broiler chicken carcasses in two commercial poultry slaughter plants in Quebec, Canada; (ii) investigate the presence of Salmonella in the slaughter plant environment; (iii) describe, using a high-resolution melting (HRM) approach, the HRM Salmonella profiles and serotypes present on carcasses and in the slaughter plant environment; and (iv) evaluate whether the HRM flock status after chilling could be predicted by the flock status at previous steps of the slaughter process, the status of previous flocks, or the status of the processing environment, for the same HRM profile. Eight visits were conducted in each slaughter plant over a 6-month period. In total, 379 carcass rinsates from 79 flocks were collected at five critical steps of the slaughter process. Environmental samples were also collected from seven critical sites in each slaughter plant. The bleeding step was the most contaminated, with >92% positive carcasses. A decrease of the contamination along the slaughtering process was noted, with carcasses sampled after dry-air chilling showing ≤2.5% Salmonella prevalence. The most frequently isolated serotypes were Salmonella Heidelberg, Kentucky, and Schwarzengrund. The detection of the Salmonella Heidelberg 1-1-1 HRM profile on carcasses after chilling was significantly associated with its detection at previous steps of the slaughter process and in previously slaughtered flocks from other farms during a same sampling day. Results highlight the importance of the chilling step in the control of Salmonella on broiler chicken carcasses and the need to further describe and compare the competitive advantage of Salmonella serotypes to survive processing. The current study also illustrates the usefulness of HRM typing in investigating Salmonella contamination along the slaughter process.
Subject(s)
Abattoirs , Chickens , Animals , Canada , Food Contamination/analysis , Food Microbiology , Kentucky , Prevalence , Salmonella/geneticsABSTRACT
In broiler chicken production, microbial populations on the eggshell surface following oviposition are still poorly characterized, though they may significantly impact both poultry and public health. The aim of this study was to describe the microbiota of both broiler breeder hens' feces and the surface of their eggs to assess the contribution of the parental fecal microbiota to the eggshell microbiota. A total of twelve breeder flocks in Quebec, Canada, were sampled at two different times, and a total of 940 feces and 16,400 egg surface samples were recovered. Using 16S rRNA gene sequencing, we showed that even if the microbiota of both feces and eggshells were mainly composed of the phyla Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes, the bacterial community compositions and structures differed between both types of samples. Our results also showed that both the sampling time and the flock identity significantly influenced the alpha- and the beta-diversities of the studied microbiomes. Using a Venn diagram, we showed that 1790 operational taxonomic units (OTUs) were shared between feces and eggshell samples. Sequences associated with genera of potentially pathogenic and spoilage bacteria, Acinetobacter, Campylobacter, Escherichia/Shigella, Helicobacter, Listeria, Proteus, Pseudomonas, Salmonella, and Staphylococcus, were shared between sample types. Some OTUs highly represented in the fecal microbiota and associated with Lactobacillus and Streptococcus genera, were absent from eggshells, suggesting a selection during the microbiota transfer and/or the potential role of environmental contamination. To the best of our knowledge, this is the first study using 16S rRNA sequencing to describe the contribution of the transfer from the fecal microbial ecosystem of laying breeder hens to the establishment of the microbiota on the surface of laid eggs, as well as the bacterial communities at both the broiler breeder feces and the eggshell levels.