Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.045
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39419025

ABSTRACT

Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.

2.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608656

ABSTRACT

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Subject(s)
Genome, Human , Humans , Europe , Genetic Variation , Scandinavian and Nordic Countries , United Kingdom , White People/genetics , White People/history , Human Migration
3.
Annu Rev Immunol ; 33: 445-74, 2015.
Article in English | MEDLINE | ID: mdl-25622193

ABSTRACT

The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.


Subject(s)
Immunity, Innate , Neoplasms/immunology , Neoplasms/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immune System/cytology , Immunotherapy , Ligands , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Microbiota , Neoplasms/microbiology , Neoplasms/therapy , Signal Transduction
4.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450205

ABSTRACT

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Subject(s)
Antiviral Agents/pharmacology , Immunity/drug effects , Spliceosomes/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Adaptive Immunity/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cytoplasm/drug effects , Cytoplasm/metabolism , Female , Gene Amplification/drug effects , Humans , Introns/genetics , Mice , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Double-Stranded/metabolism , Signal Transduction/drug effects , Spliceosomes/drug effects , Triple Negative Breast Neoplasms/genetics
5.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845489

ABSTRACT

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Subject(s)
T-Lymphocyte Subsets , Transcriptome , Child , Humans , Aged , Aging/genetics , Epitopes/metabolism , Single-Cell Analysis
6.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212010

ABSTRACT

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Molecular Targeted Therapy , Proteogenomics , APOBEC Deaminases/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cohort Studies , DNA Damage , DNA Repair , Female , Humans , Immunotherapy , Metabolomics , Middle Aged , Mutagenesis/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Receptor, ErbB-2/metabolism , Retinoblastoma Protein/metabolism , Tumor Microenvironment/immunology
7.
Nat Immunol ; 23(6): 960-970, 2022 06.
Article in English | MEDLINE | ID: mdl-35654851

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
8.
Cell ; 173(2): 499-514.e23, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576454

ABSTRACT

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.


Subject(s)
Aneuploidy , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Chromosome Mapping , Chromosomes/genetics , E2F1 Transcription Factor/antagonists & inhibitors , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Female , Gene Library , Genomics , Humans , Keratins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Oncogenes , Open Reading Frames/genetics , RNA Interference , RNA, Small Interfering/metabolism
9.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36889306

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
10.
Cell ; 171(2): 427-439.e21, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985565

ABSTRACT

Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.


Subject(s)
Avian Proteins/genetics , Feathers/physiology , Melopsittacus/genetics , Pigments, Biological/biosynthesis , Polyenes/metabolism , Polyketide Synthases/genetics , Amino Acid Sequence , Animals , Avian Proteins/metabolism , Feathers/anatomy & histology , Feathers/chemistry , Gene Expression , Genome , Genome-Wide Association Study , Melopsittacus/anatomy & histology , Melopsittacus/physiology , Pigmentation , Polyketide Synthases/metabolism , Polymorphism, Single Nucleotide , Regeneration , Sequence Alignment
11.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29033130

ABSTRACT

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Immunotherapy , Melanoma/therapy , Tumor Microenvironment , Genome-Wide Association Study , Humans , Melanoma/genetics , Melanoma/immunology , Nivolumab , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes , Transcriptome
12.
Cell ; 170(6): 1109-1119.e10, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886381

ABSTRACT

Here we report a phase 1b clinical trial testing the impact of oncolytic virotherapy with talimogene laherparepvec on cytotoxic T cell infiltration and therapeutic efficacy of the anti-PD-1 antibody pembrolizumab. Twenty-one patients with advanced melanoma were treated with talimogene laherparepvec followed by combination therapy with pembrolizumab. Therapy was generally well tolerated, with fatigue, fevers, and chills as the most common adverse events. No dose-limiting toxicities occurred. Confirmed objective response rate was 62%, with a complete response rate of 33% per immune-related response criteria. Patients who responded to combination therapy had increased CD8+ T cells, elevated PD-L1 protein expression, as well as IFN-γ gene expression on several cell subsets in tumors after talimogene laherparepvec treatment. Response to combination therapy did not appear to be associated with baseline CD8+ T cell infiltration or baseline IFN-γ signature. These findings suggest that oncolytic virotherapy may improve the efficacy of anti-PD-1 therapy by changing the tumor microenvironment. VIDEO ABSTRACT.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Melanoma/therapy , Oncolytic Virotherapy/adverse effects , Combined Modality Therapy , Herpesviridae/genetics , Humans , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment
14.
Annu Rev Biochem ; 84: 765-90, 2015.
Article in English | MEDLINE | ID: mdl-26034893

ABSTRACT

Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.


Subject(s)
Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , Signal Transduction , Animals , Humans , Oxidation-Reduction , Sulfenic Acids/metabolism
15.
Nature ; 629(8010): 80-85, 2024 May.
Article in English | MEDLINE | ID: mdl-38693414

ABSTRACT

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid-state electronic devices1-3, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern complementary metal-oxide-semiconductor (CMOS) industry. Equally important, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics such as qubit yield and voltage variation. Spin qubits1,4,5 based on electrons in Si have shown impressive control fidelities6-9 but have historically been challenged by yield and process variation10-12. Here we present a testing process using a cryogenic 300-mm wafer prober13 to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and investigate the transitions of single electrons across full wafers. We analyse the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300-mm scale. Together, these results demonstrate the advances that can be achieved through the application of CMOS-industry techniques to the fabrication and measurement of spin qubit devices.

16.
Nat Immunol ; 18(1): 74-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27893700

ABSTRACT

The cellular sources of interleukin 6 (IL-6) that are relevant for differentiation of the TH17 subset of helper T cells remain unclear. Here we used a novel strategy for the conditional deletion of distinct IL-6-producing cell types to show that dendritic cells (DCs) positive for the signaling regulator Sirpα were essential for the generation of pathogenic TH17 cells. Using their IL-6 receptor α-chain (IL-6Rα), Sirpα+ DCs trans-presented IL-6 to T cells during the process of cognate interaction. While ambient IL-6 was sufficient to suppress the induction of expression of the transcription factor Foxp3 in T cells, trans-presentation of IL-6 by DC-bound IL-6Rα (called 'IL-6 cluster signaling' here) was needed to prevent premature induction of interferon-γ (IFN-γ) expression in T cells and to generate pathogenic TH17 cells in vivo. Our findings should guide therapeutic approaches for the treatment of TH17-cell-mediated autoimmune diseases.


Subject(s)
Central Nervous System/immunology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-6 Receptor alpha Subunit/genetics , Interleukin-6/metabolism , Th17 Cells/immunology , Animals , Autoimmunity , Cell Differentiation , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
17.
Cell ; 159(5): 1086-1095, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416947

ABSTRACT

Fighting viral infections is hampered by the scarcity of viral targets and their variability, resulting in development of resistance. Viruses depend on cellular molecules-which are attractive alternative targets-for their life cycle, provided that they are dispensable for normal cell functions. Using the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We further show that RACK1 is an essential determinant for hepatitis C virus translation and infection, indicating that its function is conserved for distantly related human and fly viruses. Inhibition of RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced adult flies are viable, indicating that this protein is not essential for general translation. Our findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.


Subject(s)
Dicistroviridae/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/virology , GTP-Binding Proteins/metabolism , Hepatocytes/virology , Insect Viruses/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cell Line, Tumor , Drosophila melanogaster/metabolism , Hepacivirus/metabolism , Hepatocytes/metabolism , Humans , Models, Molecular , Peptide Initiation Factors/metabolism , Protein Biosynthesis , Receptors for Activated C Kinase , Regulatory Sequences, Ribonucleic Acid , Virus Replication
18.
Nature ; 620(7974): 557-561, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587300

ABSTRACT

Supercooled water droplets are widely used to study supercooled water1,2, ice nucleation3-5 and droplet freezing6-11. Their freezing in the atmosphere affects the dynamics and climate feedback of clouds12,13 and can accelerate cloud freezing through secondary ice production14-17. Droplet freezing occurs at several timescales and length scales14,18 and is sufficiently stochastic to make it unlikely that two frozen drops are identical. Here we use optical microscopy and X-ray laser diffraction to investigate the freezing of tens of thousands of water microdrops in vacuum after homogeneous ice nucleation around 234-235 K. On the basis of drop images, we developed a seven-stage model of freezing and used it to time the diffraction data. Diffraction from ice crystals showed that long-range crystalline order formed in less than 1 ms after freezing, whereas diffraction from the remaining liquid became similar to that from quasi-liquid layers on premelted ice19,20. The ice had a strained hexagonal crystal structure just after freezing, which is an early metastable state that probably precedes the formation of ice with stacking defects8,9,18. The techniques reported here could help determine the dynamics of freezing in other conditions, such as drop freezing in clouds, or help understand rapid solidification in other materials.

19.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938782

ABSTRACT

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Subject(s)
Antifungal Agents , Kidney , Polyenes , Sterols , Animals , Humans , Mice , Amphotericin B/analogs & derivatives , Amphotericin B/chemistry , Amphotericin B/toxicity , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Cells, Cultured , Cholesterol/chemistry , Cholesterol/metabolism , Drug Resistance, Fungal , Ergosterol/chemistry , Ergosterol/metabolism , Kidney/drug effects , Kinetics , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Polyenes/chemistry , Polyenes/metabolism , Polyenes/pharmacology , Serial Passage , Sterols/chemistry , Sterols/metabolism , Time Factors
20.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216543

ABSTRACT

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA-Binding Proteins/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cell Death/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Mice, Nude , Mice, Transgenic , Protein Biosynthesis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL